Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-12T10:48:16.943Z Has data issue: false hasContentIssue false

An Analytical Theory for a Gyrostatic Earth

Published online by Cambridge University Press:  12 April 2016

R. Molina
Affiliation:
Depto. de Matemática Aplicada y Estadistica, Univ. Murcia Cartagena, Spain
A. Vigueras
Affiliation:
Depto. de Matemática Aplicada y Estadistica, Univ. Murcia Cartagena, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we consider the problem of the rotation of the Earth, using a stationary triaxial gyrostat as a model. The problem is formulated by means of dimensionless canonical variables of Serret-Andoyer, referred to the mean ecliptic of date, in a similar way to Kinoshita (1977). We choose the constant components of the gyrostatic momentum in such a way that the period of the polar motion corresponds to Chandler’s period. Finally, the problem is integrated by means of Deprit’s perturbation method.

Type
Rotation of Solar System Objects
Copyright
Copyright © Kluwer 1997

References

Andoyer, H.: 1923, Cours de Mécanique Céleste, Gauthier-Villar, Paris.Google Scholar
Cid, R. and Correas, J.M.: 1973, Act. I Jornadas Matem. Hispano-Lusas, 439452.Google Scholar
Cid, R. and Vigueras, A.: 1990, Rev. Acad. Ciencias Zaragoza, 45, 8393.Google Scholar
Deprit, A.: 1969, “Canonical transformations depending on a small parameter”, Celest. Mech. 1, 1230.Google Scholar
Fukushima, T.: 1995, “A numerical scheme to integrate the rotational motion of a rigid body”, private communication.Google Scholar
Getino, J., and Ferrándiz, J.M.: 1991, “A Hamiltonian theory for an elastic Earth: First order analytical integration”, Celest. Mech. & Dyn. Astron. 51, 3565.Google Scholar
Kinoshita, H.: 1977, “Theory of the rotation of the rigid Earth”, Celest. Mech. 15, 277326.Google Scholar
Kinoshita, H. and Souchay, J.: 1990, “The theory of the nutation for the rigid Earth model at the second order”, Celest. Mech. & Dyn. Astron. 48, 187265.Google Scholar
Molina, R.: 1996, Ph.D. thesis (in preparation), Univ. de Murcia, Spain.Google Scholar
Vigueras, A.: 1983, Movimiento Rotatorio de Giróstatos y Aplicaciones, Ph.D. Thesis, Univ. de Zaragoza, Spain.Google Scholar
Volterra, V.: 1899, Acta Mathematica 22, 201.Google Scholar