No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Observations of galaxies in the IR and optical (Lynden-Bell et al. 1989) suggest that the 600 km/s peculiar velocity of the LG (Local Group of galaxies) arises mainly from a foreground of anisotropically distributed mass within z = 0.013 (i.e., HR < 4000 km/s). Since the X-ray luminosity of bright extragalactic X-ray sources provides a good mass measure of the radiating objects involved and can be observed relatively free of galactic obscuration effects, such sources are likely candidates for serving as reliable tracers of the total underlying mass (i.e., dark as well as visible) responsible for the acceleration of the LG. In this connection, we note that the local gravitational dipole implied by the fifty X-ray brightest clusters of galaxies at z > 0.013 considered by Lahav et al. (1989) is relatively small compared with that inferred from the only three clusters at lower redshifts. Since the local space density of AGN (Active Galactic Nuclei) is about two orders of magnitude greater than rich clusters, however, such compact sources have the potential of providing a vastly improved statistical sample for tracing mass in the low-redshift region of particular interest. Furthermore, recent dipole analysis of the X-ray flux from bright AGN observed with HEAO-1 A2 indicates that they are indeed strong tracers of this matter (Miyaji and Boldt 1990). The implications of this for the very pronounced large-scale foreground anisotropies to be measured via low-redshift AGN resolved in more sensitive all-sky surveys are explored.