Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T15:50:03.147Z Has data issue: false hasContentIssue false

Accretion Disk Instabilities

Published online by Cambridge University Press:  12 April 2016

F. Meyer*
Affiliation:
Max-Planck-lnstitut für Physik und Astrophysik, Institut für Astrophysik, Karl-Schwarzschlld-Str. 1 D-8046 Garching bei München. FRG

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article we discuss two instabilities of stationary accretion disks which lead to an understanding of observed light variations in accretion disk systems, the dwarf novae and the rapid burster MXB 17030-335. The accretion disks in these systems avoid instability at the cost of stationarity and perform stable cycles in which sudden changes of the accretion flow lead to corresponding, often dramatic, variations of their accretion luminosity.

Figure 1 shows a light curve of U Geminorum. It was discovered In 1855 by J.R. Hind and has become a prototype of the dwarf novae. In these systems an extended time of quiescence of up to several weeks Is followed by a short outburst of a few days during which the luminosity rises by a factor of 30 to 100. The dwarf novae belong to the cataclysmic variables. They are all close binaries In which a white dwarf primary is orbited by a Roche lobe-filling low mass secondary. Through the inner Lagrangian point mass flows over from the secondary and forms a luminious accretion disk around the white dwarf. In the case of the dwarf novae this disk has temperatures below about 10000K in Its outer region. It will be discussed how partial lonizatlon and convection then affect the vertical structure of the disk such that the stationary flow becomes unstable.

Fig. 1. Light curve of the dwarf nova U Geminorum. Abszissa in days С [2])

Type
5. Novae and Accretion Disks
Copyright
Copyright © Springer-Verlag 1986

References

1. Llghtman, A.P. and Eardley, D.M.: Astrophys. J. Lett. 187, L1(1974)Google Scholar
2. Glasby., J.S.: “The Dwarf Novae”. Constable Co. Ltd. London, p. 201 (1970)Google Scholar
3. Lewin, W.H.G., Doty, J., Clark, G.W., Rappaport, S.A., Bradt, H.V.D. Doxsey, R., Hearn, D.R., Hoffman, J.A., Jernlgan, J.G., Li., F.K., Mayer, W., McCllntock, J., Prlminl, F., and Richardson, J.: Astrophys. J. Lett. 207, L95 (1976)Google Scholar
4. Kunleda, H., Tawara., Y., Hayakawa., S., Masai., K., Nagase., F., Inoue., H., Koyama., K., Maklno., F., Maklshima., K., Matsuoka., M., Murakami., T., Oda., M., Ogawara., Y., Ohashi., T., Shlbazaki., N., Tanaka., Y., Kondo., I., Miyamoto., S., H, Tsunemand., i. Yamashita, K.: Publ. Astron. Soc. Japan 26, 215 (1984)Google Scholar
5. Pringle, J.E.: Ann. Rev. Astron. Astrophys. 19, 137 (1981)Google Scholar
6. Smak., J.: Publ. Astron. Soc. Pacific 96, 5 (1984)Google Scholar
7. Meyer., F.: in “Recent Results on Cataclysmic Variables”. Proceedings of an ESA Workshop In Bamberg. Burke., W.R. ed. ESA sp-236. ESTEC. Noordwljk. p. 83 (1985)Google Scholar
8. Shakura, N.I. and Sunyaev, R.A.. Astron Astrophys. 24, 337 (1973)Google Scholar
9. Novikov., I.D. and Thome, K.S.: In “Black Holes”, DeWitt, C., DeWitt., B.S. eds. Gordon & Breach, New York (1973)Google Scholar
10. Bath., G.T. and Pringle., J.E.: Mon. Not. Roy. astron. Soc. 194, 967 (1981)CrossRefGoogle Scholar
11. Duschl., W.J.: Astron. Astrophys. 119, 248 (1983)Google Scholar
12. Williams., R.E.: Astrophys. J. 235, 939 (1980)Google Scholar
13. Tylenda, R.: Acta Astron. 31, 127 (1981)Google Scholar
14. Meyer, F. and Meyer-Hofmelster, E.: Astron. Astrophys. 106, 34. (1982)Google Scholar
15. Duschl., W.J.: Astron. Astrophys. 31, 153 (1983)Google Scholar
16. Bath, G.T. and Pringle, J.E.: Mon. Not. Roy. astron. Soc. 199, 267. (1982)Google Scholar
17. Osaki, Y.: Publ. Astron. Soc. Japan 26, 429 (1974)Google Scholar
18. Hoshl, R.: Prog. Theor. Physics 61, 1307 (1979)CrossRefGoogle Scholar
19. Meyer, F. and Meyer-Hofmeister, E.: Astron. Astrophys. 104, L10 (1981)Google Scholar
20. Meyer, F. and Meyer-Hofmeister, E.: Astron. Astrophys. 126, 34 (1982)Google Scholar
21. Smak, J.: Acta Astron. 32, 199 (1982)Google Scholar
22. Cannlzzo., J.K.. Gosh, P., and Wheeler., J.C.: Astrophys. J. (Letters) 260. L83 (1982)CrossRefGoogle Scholar
23. Smak, J.: Acta Astron. 32, 213(1982)Google Scholar
24. Meyer, F. and Meyer-Hofmeister, E.: Astron. Astrophys. 128, 420 (1983)Google Scholar
25. Smak, J.: Acta Astron. 34, 161 (1984)Google Scholar
26. Mlneshlge, S. and Osaki, Y.: Publ. Astron. Soc. Japan 35, 3(1983)Google Scholar
27. Papalolzou, J.. Faulkner, J., and Lin, D.N.C.: Mon. Not. Roy. astron. Soc. 205, 487(1983)Google Scholar
28. Lin, D.N.C.. Papalolzou, J., and J.Faulkner, : Mon. Not. Roy. astron. Soc. 212, 105(1985)CrossRefGoogle Scholar
29. Mineshige, S. and Osaki, Y.: Publ. Astron. Soc. Japan 35, 377 (1983)Google Scholar
30. Meyer, F.: Astron. Astrophys. 131, 303 (1984)Google Scholar
31. Meyer, F. and Meyer-Hofmeister, E.: Astron. Astrophys. 132, 143 (1984)Google Scholar
32. Meyer, F. and Meyer-Hofmeister, E.: Astron. Astrophys. 140, L35 (1984)Google Scholar
33. Priedhorsky., W.C. and Terrell, J.: Astrophys. J. 280, 661 (1984)Google Scholar
34. Priedhorsky, W. and Terrell, J.: Astrophys. J. (Letters) 284, L17 (1984)Google Scholar
35. Shakura., N.I. and Sunyaev., R.A.: Mon. Not. Roy. astron. Soc. 175, 613(1976)Google Scholar
36. Pringle., J.E.: Mon. Not. Roy. astron. Soc. 177, 65 (1976)CrossRefGoogle Scholar
37. Thome., K.S. and Zytkow., A.N.: Astrophys. J. 212, 832 (1977)Google Scholar
38. Lewln., W.G. and Joss., P.C.: Space Science Rev. 28, 3 (1981)Google Scholar
39. Eblsuzakl, T.. Hanawa, T.. and Suglmoto, D.: Publ. Astron. Soc. Japan. 36, 551 (1984)Google Scholar
40. Taam., R.E. and Lin, D.N.C.: Astrophys. J. 287, 761 (1984)Google Scholar
41. van der Kils, M., Jansen, F., van Paradijs, J., Lewin, W.H.G., van den Heuvel, E.P.J., Trümper, J.E., and Sztajno, M.: Nature 316, 225 (1985)Google Scholar