Published online by Cambridge University Press: 12 April 2016
With the advent of bidimensional array detectors the throughput advantage of a Fourier Transform Spectrometer (FTS) can be used to create a new type of 3-D spectrometer. The classical multiplex property in the spectral domain of a FTS is multiplied by the number of pixel of the array. The points of the entrance field are all observed in parallel. After discussing the properties of this instrument, the coupling of the FTS of the CFH Telescope to a camera equipped with a NICMOS 3 array is described. With this combination, spectro-imaging in any bandpass between 1 and 2.5 µm is possible within a circular 24” field of view, with a scale of 0.33”/pixel, at seeing-limited spatial resolution. Any spectral resolution is choosable up to 30,000. Illustrations are given by a study of the dark side of Venus at 1.27 µm and of planetary nebulae at 2 µm. Many other objects can benefit from this observing mode in the near infrared. Further developments of this 3-D technique are discussed.