No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Crater size frequency distributions vary to a degree which probably cannot be explained by variations in lunar surface orientation of the crater detectors or changes in micrometeoroid flux. Questions of sample representativity suggest that high ratios of small to large craters of micrometeoroids (e.g., a million 1.0 micron craters for each 500 micron crater) should be the most reliable. We obtain a flux for particles producing 0.1 micron diameter craters of approximately 300 per cm2 per steradian per year. We observe no anisotropy in the submicron particle flux between the plane of the ecliptic and the normal in the direction of lunar north. No change in flux over a 106 year period is indicated by our data.