Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T05:32:29.987Z Has data issue: false hasContentIssue false

1. Interstellar Material in Meteorites: Implications for the Origin and Evolution of the Solar Nebula

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several isotopie anomalies, unexplained by known nuclear or non-nuclear processes within the solar system have been attributed to the preservation of pre-solar variations. The largest of these (in number of atoms) in an 16O-excess (up to 5%) in “high-temperature condensate” minerals in primitive meteorites. Some of these same minerals have an excess of 26Mg, probably a decay product of 26Al, that could have been a major source of heat for melting and metamorphosing planetesimals. Excesses of 22Ne and of isotopes of Xe, found in carbonaceous chondrites, may have origins in presolar solid particles. Large variation in the isotopie abundances of nitrogen and carbon in meteorites may also represent isotopie heterogeneity in the solar nebula. Most of these “Isotopically anomalous” elements are found to be highly concentrated in minute phases within the meteorites, rather than being uniformly distributed. The identification and characterization of these carriers of presolar materials constitutes the principal thrust of current research in this area.

Type
Part VI. Primitive Meteorites
Copyright
Copyright © A.H. Delsemme 1977

References

Anders, E., Higuchi, H., Gros, J., Takahashi, H., and Morgan, J. W. 1975, Science, 190, 1262.Google Scholar
Arnett, W. D. 1969, Ap.J., 157, 1369.CrossRefGoogle Scholar
Black, D. C. 1972, Geochim. Cosmochim. Acta, 36, 377.CrossRefGoogle Scholar
Briggs, M. H. 1963, Nature, 197, 1290.Google Scholar
Burbidge, E. M.,Burbidge, G. R., Fowler, W. A., and Hoyle, F. 1957, Rev. Mod. Phys., 29, 547.CrossRefGoogle Scholar
Cameron, A.G.W., and Truran, J. W. 1976, Nature, in press.Google Scholar
Clayton, D. D., Dwek, E., and Woosley, S. E. 1976, Ap.J., in press.Google Scholar
Clayton, R. N. 1963, Science, 140, 192.CrossRefGoogle Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. 1973, Science, 182, 485.Google Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. 1976, Earth Planet. Sci. Lett., in press.Google Scholar
Eberhardt, P. 1974, Earth Planet. Sci. Lett., 24, 182.CrossRefGoogle Scholar
Gray, C. M., and Compston, W. 1974, Nature, 251, 495.Google Scholar
Grossman, L. 1972, Geochim. Cosmochim. Acta, 36, 597.Google Scholar
Grossman, L., and Ganapathy, R. 1976, EOS, Trans. Am. Geoph. Union., 57, 278, (abstract).Google Scholar
Herzog, G. F. 1972 J. Geophys. Res., 77, 6219.Google Scholar
Heymann, D., and Dziczkaniec, M. 1976, Science, 191, 79.Google Scholar
Jovanovic, S., and Reed, G. W. 1976, Earth Planet. Sci. Lett., 31, 95.Google Scholar
Kung, C. C. 1976, Ph.D. thesis, University of Chicago.Google Scholar
Lee, T., and Papanastassiou, D. A. 1974, Geophys. Res. Lett., 1, 225.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. 1976, Geophys. Res. Lett., 3, 109.Google Scholar
Lewis, R. S., Srinivasan, B., and Anders, E. 1975, Science, 190, 1251.Google Scholar
Manuel, O, , K., Henecke, E. W., and Sabu, D. D. 1972, Nature, 240, 99.Google Scholar
Reed, G. W., and Jovanovic, S. 1969, J. Inorg. Nucl. Chem., 31, 3783.Google Scholar
Reynolds, J. M., and Turner, G. 1964, J. Geophys. Res., 69, 3263.Google Scholar
Sabu, D. D., and Manuel, O, , K. 1976, EOS, Trans. Amer. Geophys. Union, 57, 278, (abstract).Google Scholar
Tatsumoto, M., Unruh, D. M., and Desborough, G. A. 1976, Geochim. Cosmochim. Acta, 40, 617.Google Scholar