Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T21:33:08.390Z Has data issue: false hasContentIssue false

Surgical Site Infection After Primary Hip and Knee Arthroplasty: A Cohort Study Using a Hospital Database

Published online by Cambridge University Press:  08 July 2015

Leslie Grammatico-Guillon*
Affiliation:
Service d’Information Médicale, d’Epidémiologie et d’Economie de la Santé, Centre Hospitalier Régional Universitaire de Tours, Laboratoire de santé publique, Université François Rabelais, Tours, France
Sabine Baron
Affiliation:
Unité régionale d’épidémiologie hospitalière, Centre Hospitalier Régional Universitaire de Tours, France
Philippe Rosset
Affiliation:
Service de chirurgie orthopédique, Centre Hospitalier Régional Universitaire Tours, Université François Rabelais, Tours, France
Christophe Gaborit
Affiliation:
Unité régionale d’épidémiologie hospitalière, Centre Hospitalier Régional Universitaire de Tours, France
Louis Bernard
Affiliation:
Service de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Régional Universitaire Tours, Université François Rabelais, Tours, France
Emmanuel Rusch
Affiliation:
Service d’Information Médicale, d’Epidémiologie et d’Economie de la Santé, Centre Hospitalier Régional Universitaire de Tours, Laboratoire de santé publique, Université François Rabelais, Tours, France
Pascal Astagneau
Affiliation:
Ecole des Hautes Etudes en Santé Publique & Centre de coordination pour la lutte contre les infections associées aux soins, Paris, France
*
Address correspondence to Leslie Grammatico-Guillon, MD, PhD, SIMEES, CHRU de Tours, Hôpital Bretonneau, 2 BD Tonnellé, 37000 Tours France ([email protected]).

Abstract

BACKGROUND

Hip or knee arthroplasty infection (HKAI) leads to heavy medical consequences even if rare.

OBJECTIVE

To assess the routine use of a hospital discharge detection algorithm of prosthetic joint infection as a novel additional tool for surveillance.

METHODS

A historic 5-year cohort study was built using a hospital database of people undergoing a first hip or knee arthroplasty in 1 French region (2.5 million inhabitants, 39 private and public hospitals): 32,678 patients with arthroplasty code plus corresponding prosthetic material code were tagged. HKAI occurrence was then tracked in the follow-up on the basis of a previously validated algorithm using International Statistical Classification of Disease, Tenth Revision, codes as well as the surgical procedures coded. HKAI density incidence was estimated during the follow-up (up to 4 years after surgery); risk factors were analyzed using Cox regression.

RESULTS

A total of 604 HKAI patients were identified: 1-year HKAI incidence was1.31%, and density incidence was 2.2/100 person-years in hip and 2.5/100 person-years in knee. HKAI occurred within the first 30 days after surgery for 30% but more than 1 year after replacement for 29%. Patients aged 75 years or older, male, or having liver diseases, alcohol abuse, or ulcer sore had higher risk of infection. The inpatient case fatality in HKAI patients was 11.4%.

CONCLUSIONS

The hospital database method used to measure occurrence and risk factors of prosthetic joint infection helped to survey HKAI and could optimize healthcare delivery.

Infect Control Hosp Epidemiol 2015;36(10):1198–1207

Type
Original Articles
Copyright
© 2015 by The Society for Healthcare Epidemiology of America. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Astagneau, P, Rioux, C, Golliot, F, Brücker, G. Morbidity and mortality associated with surgical site infections: results from the 1997–1999 INCISO surveillance. J Hosp Infect 2001;48:267274.CrossRefGoogle ScholarPubMed
2. Barnes, S, Salemi, C, Fithian, D, et al. An enhanced benchmark for prosthetic joint replacement infection rates. Am J Infect Control 2006;34:669672.Google Scholar
3. Mabit, C, Marcheix, PS, Mounier, M, et al. Impact of a surgical site infection (SSI) surveillance program in orthopedics and traumatology. Orthop Traumatol Surg Res 2012;98:690695.Google Scholar
4. Muilwijk, J, van den Hof, S, Wille, JC. Associations between surgical site infection risk and hospital operation volume and surgeon operation volume among hospitals in the Dutch nosocomial infection surveillance network. Infect Control Hosp Epidemiol 2007;28:557563.CrossRefGoogle ScholarPubMed
5. Grammatico-Guillon, L, Baron, S, Gettner, S, et al. Bone and joint infections in hospitalized patients in France, 2008: clinical and economic outcomes. J Hosp Infect 2012;82:4048.Google Scholar
6. Grammatico-Guillon, L, Rusch, E, Astagneau, P. Surveillance of prosthetic joint infections: international overview and new insights for hospital databases. J Hosp Infect 2015;89:9098.Google Scholar
7. Wilson, APR, Gibbons, C, Reeves, BC, et al. Surgical wound infection as a performance indicator: agreement of common definitions of wound infection in 4773 patients. BMJ 2004;329:720.Google Scholar
8. Bozic, KJ, Kurtz, SM, Lau, E, et al. The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 2010;468:4551.Google Scholar
9. Inacio, MCS, Paxton, EW, Chen, Y, et al. Leveraging electronic medical records for surveillance of surgical site infection in a total joint replacement population. Infect Control Hosp Epidemiol 2011;32:351359.CrossRefGoogle Scholar
10. Lentino, JR. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 2003;36:11571161.CrossRefGoogle ScholarPubMed
11. Astagneau, P, L’Hériteau, F, Daniel, F, et al. Reducing surgical site infection incidence through a network: results from the French ISO-RAISIN surveillance system. J Hosp Infect 2009;72:127134.CrossRefGoogle ScholarPubMed
12. Rioux, C, Grandbastien, B, Astagneau, P. Impact of a six-year control programme on surgical site infections in France: results of the INCISO surveillance. J Hosp Infect 2007;66:217223.Google Scholar
13. Zimmerli, W, Trampuz, A, Ochsner, PE. Prosthetic-joint infections. N Engl J Med 2004;351:16451654.CrossRefGoogle ScholarPubMed
14. Hunt, LP, Ben-Shlomo, Y, Clark, EM, et al. 90-day mortality after 409,096 total hip replacements for osteoarthritis, from the National Joint Registry for England and Wales: a retrospective analysis. Lancet 2013;382:10971104.Google Scholar
15. Coello, R, Gastmeier, P, Boer, AS. de. Surveillance of hospital-acquired infection in England, Germany, and the Netherlands: will international comparison of rates be possible? Infect Control Hosp Epidemiol 2001;22:393397.Google Scholar
16. Grammatico-Guillon, L, Maakaroun Vermesse, Z, Baron, S, Gettner, S, Rusch, E, Bernard, L. Paediatric bone and joint infections are more common in boys and toddlers: a national epidemiology study. Acta Paediatr 2013;102:e120e125.Google Scholar
17. Grammatico, L, Baron, S, Rusch, E, et al. Epidemiology of vertebral osteomyelitis (VO) in France: analysis of hospital-discharge data 2002-2003. Epidemiol Infect 2008;136:653660.Google Scholar
18. Defez, C, Fabbro-Peray, P, Cazaban, M, Boudemaghe, T, Sotto, A, Daurès, JP. Additional direct medical costs of nosocomial infections: an estimation from a cohort of patients in a French university hospital. J Hosp Infect 2008;68:130136.CrossRefGoogle Scholar
19. Lipsky, BA, Weigelt, JA, Gupta, V, Killian, A, Peng, MM. Skin, soft tissue, bone, and joint infections in hospitalized patients: epidemiology and microbiological, clinical, and economic outcomes. Infect Control Hosp Epidemiol 2007;28:12901298.Google Scholar
20. Grammatico-Guillon, L, Baron, S, Gaborit, C, Rusch, E, Astagneau, P. Quality assessment of hospital discharge database for routine surveillance of hip and knee arthroplasty-related infections. Infect Control Hosp Epidemiol 2014;35:646651.CrossRefGoogle ScholarPubMed
21. Zimmerli, W, Ochsner, PE. Management of infection associated with prosthetic joints. Infection 2003;31:99108.CrossRefGoogle ScholarPubMed
22. Malinzak, RA, Ritter, MA, Berend, ME, Meding, JB, Olberding, EM, Davis, KE. Morbidly obese, diabetic, younger, and unilateral joint arthroplasty patients have elevated total joint arthroplasty infection rates. J Arthroplasty 2009;24:8488.Google Scholar
23. Zhao, Y, Fu, D, Chen, K, et al. Outcome of hemiarthroplasty and total hip replacement for active elderly patients with displaced femoral neck fractures: a meta-analysis of 8 randomized clinical trials. PLOS ONE 2014;9:e98071.CrossRefGoogle ScholarPubMed
24. Lindgren, JV, Wretenberg, P, Kärrholm, J, Garellick, G, Rolfson, O. Patient-reported outcome is influenced by surgical approach in total hip replacement: a study of the Swedish Hip Arthroplasty Register including 42,233 patients. Bone Joint J 2014;96-B:590596.Google Scholar
25. Kurtz, SM, Lau, E, Schmier, J, Ong, KL, Zhao, K, Parvizi, J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty 2008;23:984991.Google Scholar
26. Jämsen, E, Nevalainen, P, Eskelinen, A, Huotari, K, Kalliovalkama, J, Moilanen, T. Obesity, diabetes, and preoperative hyperglycemia as predictors of periprosthetic joint infection: a single-center analysis of 7181 primary hip and knee replacements for osteoarthritis. J Bone Joint Surg Am 2012;94:e101.Google Scholar
27. Núñez, M, Lozano, L, Núñez, E, Sastre, S, Luis Del Val, J, Suso, S. Good quality of life in severely obese total knee replacement patients: a case-control study. Obes Surg 2011;21:12031208.Google Scholar
28. Bhumbra, RS. Cleaning up joint replacement services in the UK. BMJ 2012;345:e5862.Google Scholar
29. Robertsson, O, Knutson, K, Lewold, S, Lidgren, L. The Swedish Knee Arthroplasty Register 1975-1997: an update with special emphasis on 41,223 knees operated on in 1988-1997. Acta Orthop Scand 2001;72:503513.Google Scholar
30. Grammatico-Guillon, L, Baron, S, Gaborit, C, Rosset, P, Rusch, E, Bernard, L. Letter in response to the article on bone and joint infection in the United States: French data. J Arthroplasty 2013;28:1055.Google Scholar
31. Ravi, B, Jenkinson, R, Austin, PC, et al. Relation between surgeon volume and risk of complications after total hip arthroplasty: propensity score matched cohort study. BMJ 2014;348:g3284.Google Scholar
32. Charlson, ME, Pompei, P, Ales, KL, MacKenzie, CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373383.Google Scholar
33. Nuttall, M, van der Meulen, J, Emberton, M. Charlson scores based on ICD-10 administrative data were valid in assessing comorbidity in patients undergoing urological cancer surgery. J Clin Epidemiol 2006;59:265273.Google Scholar
34. Conner-Spady, BL, Marshall, DA, Bohm, E, et al. Patient factors in referral choice for total joint replacement surgery. Med Care 2014;52:300306.CrossRefGoogle ScholarPubMed
35. Andersen, TF, Madsen, M, Jørgensen, J, Mellemkjoer, L, Olsen, JH. The Danish National Hospital Register. A valuable source of data for modern health sciences. Dan Med Bull 1999;46:263268.Google Scholar
36. Ruwald, MH, Hansen, ML, Lamberts, M, et al. Prognosis among healthy individuals discharged with a primary diagnosis of syncope. J Am Coll Cardiol 2013;61:325332.CrossRefGoogle ScholarPubMed
37. Ruwald, MH, Hansen, ML, Lamberts, M, et al. Accuracy of the ICD-10 discharge diagnosis for syncope. Europace 2013;15:595600.CrossRefGoogle ScholarPubMed
38. Tanner, J, Padley, W, Kiernan, M, Leaper, D, Norrie, P, Baggott, R. A benchmark too far: findings from a national survey of surgical site infection surveillance. J Hosp Infect 2013;83:8791.CrossRefGoogle ScholarPubMed
39. Mayor, S. English hospitals under-report surgical site infections, survey shows. BMJ 2013;346:f345.Google Scholar
40. Cuggia, M, Bayat, S, Garcelon, N, et al. A full-text information retrieval system for an epidemiological registry. Stud Health Technol Inform 2010;160:491495.Google Scholar
41. Saint-Laurent, D, Blais, C, Jean, S, Sirois, C, Rochette, L, Émond, V. Le modèle québécois de surveillance des maladies chroniques basé sur l’utilisation des données médico-administratives jumelées. Bull Epidémiol Hebd 2013, Hors-série 48.Google Scholar
Supplementary material: File

Grammatico-Guillon supplementary material S1

Appendix

Download Grammatico-Guillon supplementary material S1(File)
File 33.3 KB