Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Damonti, Lauro
Kronenberg, Andreas
Marschall, Jonas
Jent, Philipp
Sommerstein, Rami
De Kraker, Marlieke E. A.
Harbarth, Stephan
Gasser, Michael
and
Buetti, Niccolò
2021.
The effect of the COVID-19 pandemic on the epidemiology of positive blood cultures in Swiss intensive care units: a nationwide surveillance study.
Critical Care,
Vol. 25,
Issue. 1,
Bloomfield, Max G
O’Connor, Michael J Q
Balm, Michelle N D
and
Blackmore, Tim K
2022.
Effect of Blood Culture Contamination on Antibiotic Use in an Institution With Rapid Laboratory Methods and Phone-Based Clinical Follow-up of Blood Culture Results.
Open Forum Infectious Diseases,
Vol. 9,
Issue. 10,
Schinkel, Michiel
Boerman, Anneroos W.
Bennis, Frank C.
Minderhoud, Tanca C.
Lie, Mei
Peters-Sengers, Hessel
Holleman, Frits
Schade, Rogier P.
de Jonge, Robert
Wiersinga, W. Joost
and
Nanayakkara, Prabath W.B.
2022.
Diagnostic stewardship for blood cultures in the emergency department: A multicenter validation and prospective evaluation of a machine learning prediction tool.
eBioMedicine,
Vol. 82,
Issue. ,
p.
104176.
Peng, Zheng
Varisco, Gabriele
Liang, Rong-Hao
Kommers, Deedee
Cottaar, Ward
Andriessen, Peter
van Pul, Carola
and
Long, Xi
2022.
DeepLOS: Deep learning for late-onset sepsis prediction in preterm infants using heart rate variability.
Smart Health,
Vol. 26,
Issue. ,
p.
100335.
Liaquat, Sidra
Baccaglini, Lorena
Haynatzki, Gleb
Medcalf, Sharon J.
and
Rupp, Mark E.
2022.
Patient-specific risk factors contributing to blood culture contamination.
Antimicrobial Stewardship and Healthcare Epidemiology,
Vol. 2,
Issue. 1,
Peng, Zheng
Varisco, Gabriele
Long, Xi
Liang, Rong-Hao
Kommers, Deedee
Cottaar, Ward
Andriessen, Peter
and
van Pul, Carola
2023.
A Continuous Late-Onset Sepsis Prediction Algorithm for Preterm Infants Using Multi-Channel Physiological Signals From a Patient Monitor.
IEEE Journal of Biomedical and Health Informatics,
Vol. 27,
Issue. 1,
p.
550.
Tompkins, Lucy S.
Tien, Vivian
and
Madison, Alexandra N.
2023.
Getting to zero: Impact of a device to reduce blood culture contamination and false-positive central-line–associated bloodstream infections.
Infection Control & Hospital Epidemiology,
Vol. 44,
Issue. 9,
p.
1386.
Khan, Sidra Liaquat
Haynatzki, Gleb
Medcalf, Sharon J.
and
Rupp, Mark E.
2023.
Clinical outcomes associated with blood-culture contamination are not affected by utilization of a rapid blood-culture identification system.
Infection Control & Hospital Epidemiology,
Vol. 44,
Issue. 10,
p.
1569.
Schinkel, Michiel
Boerman, Anneroos W.
Paranjape, Ketan
Wiersinga, W. Joost
and
Nanayakkara, Prabath W.B.
2023.
Detecting changes in the performance of a clinical machine learning tool over time.
eBioMedicine,
Vol. 97,
Issue. ,
p.
104823.
Goshorn, Eli S
Viehman, J Alex
Bariola, J Ryan
Khadem, Tina
Potoski, Brian A
and
Shields, Ryan K
2023.
Impact of Rapid Identification and Stewardship Intervention on Coagulase-Negative Staphylococcus Bloodstream Infection.
Open Forum Infectious Diseases,
Vol. 10,
Issue. 8,
Bongiovanni, Marco
and
Barda, Beatrice
2023.
Pseudomonas aeruginosa Bloodstream Infections in SARS-CoV-2 Infected Patients: A Systematic Review.
Journal of Clinical Medicine,
Vol. 12,
Issue. 6,
p.
2252.
Gettler, Erin B.
Kalu, Ibukunoluwa C.
Okeke, Nwora L.
Lewis, Sarah S.
Anderson, Deverick J.
Smith, Becky A.
and
Advani, Sonali D.
2023.
Disparities in central line-associated bloodstream infection and catheter-associated urinary tract infection rates: An exploratory analysis.
Infection Control & Hospital Epidemiology,
Vol. 44,
Issue. 11,
p.
1857.
Rello, Jordi
and
Paiva, José Artur
2023.
Antimicrobial stewardship at the emergency department: Dead bugs do not mutate!.
European Journal of Internal Medicine,
Vol. 109,
Issue. ,
p.
30.
Theophanous, Rebecca
Ramos, John
Calland, Alyssa R.
Krcmar, Rachel
Shah, Priya
da Matta, Lucas T.
Shaheen, Stephen
Wrenn, Rebekah H.
and
Seidelman, Jessica
2024.
Blood culture algorithm implementation in emergency department patients as a diagnostic stewardship intervention.
American Journal of Infection Control,
Vol. 52,
Issue. 9,
p.
985.
Veini, Fani
Samarkos, Michael
Voutsinas, Pantazis-Michael
and
Kotanidou, Anastasia
2024.
The Effect of a Care Bundle on the Rate of Blood Culture Contamination in a General Intensive Care Unit.
Antibiotics,
Vol. 13,
Issue. 11,
p.
1082.
Touzard Romo, Francine
Auld, Dianne
de Abreu, Alison
Roberts, Kimberly
Jackson, Gail
Whitehead, Valerie
O’Rourke, Emerald
Has, Phinnara
and
Mermel, Leonard A.
2024.
Implementation of an initial specimen blood culture diversion device to reduce blood culture contamination: lessons learned.
Infection Control & Hospital Epidemiology,
p.
1.
Hernández-Jiménez, Enrique
Plata-Menchaca, Erika P.
Berbel, Damaris
López de Egea, Guillem
Dastis-Arias, Macarena
García-Tejada, Laura
Sbraga, Fabrizio
Malchair, Pierre
García Muñoz, Nadia
Larrad Blasco, Alejandra
Molina Ramírez, Eva
Pérez Fernández, Xose
Sabater Riera, Joan
and
Ulsamer, Arnau
2024.
Assessing sepsis-induced immunosuppression to predict positive blood cultures.
Frontiers in Immunology,
Vol. 15,
Issue. ,
Ordookhanian, Christ
Amidon, Ryan F
Slosarski, Max
and
Kaloostian, Paul
2024.
Treat the Patient as a Whole, Not Just the Laboratory Findings: A Case of Contaminated Blood Cultures With Subsequent Iatrogenic Complications.
Cureus,
Schinkel, Michiel
Boerman, Anneroos
Carroll, Karen
Cosgrove, Sara E
Hsu, Yea-Jen
Klein, Eili
Nanayakkara, Prabath
Schade, Rogier
Wiersinga, W Joost
and
Fabre, Valeria
2024.
Impact of Blood Culture Contamination on Antibiotic Use, Resource Utilization, and Clinical Outcomes: A Retrospective Cohort Study in Dutch and US Hospitals.
Open Forum Infectious Diseases,
Vol. 11,
Issue. 2,
van der Zaag, Anuschka Y
Bhagirath, Sheena C
Boerman, Anneroos W
Schinkel, Michiel
Paranjape, Ketan
Azijli, Kaoutar
Ridderikhof, Milan L
Lie, Mei
Lissenberg-Witte, Birgit
Schade, Rogier
Wiersinga, Joost
de Jonge, Robert
and
Nanayakkara, Prabath W B
2024.
Appropriate use of blood cultures in the emergency department through machine learning (ABC): study protocol for a randomised controlled non-inferiority trial.
BMJ Open,
Vol. 14,
Issue. 5,
p.
e084053.