Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-02T19:47:20.006Z Has data issue: false hasContentIssue false

Multidrug-Resistant Gram-Negative Pathogens Multiple Approaches and Measures for Prevention

Published online by Cambridge University Press:  21 June 2016

Jan E. Patterson*
Affiliation:
Department of Medicine, University of Texas Health Science Center at San Antonio, and the Medical Service, South Texas Veterans Health Care System, San Antonio, Texas
*
South Texas Veterans Health Care System, San Antonio, TX 78229, ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2006

References

1.Gardiner, DF, Scholand, SJ, Babinchak, . Mortality and gram-negative rod bacteremia in the intensive care unit. J Hosp Infect 2006; 62:453457.Google Scholar
2.Friedman, G, Sliva, E, Vincent, JL. Has the mortality of septic shock changed with time? Crit Care Med 1998; 26:20782080.Google Scholar
3.Lautenbach, E, Weiner, MG, Nachamkin, I, Bilker, WB, Sheridan, A, Fishman, NO. Imipenem resistance among Pseudomonas aeruginosa isolates: risk factors for infection and impact of resistance on clinical and economic outcomes. Infect Control Hosp Epidemiol 2006; 27 893900 (in this issue).Google Scholar
4.Fortaleza, CMCB, Freire, MP, Moreira Filho, DC, Carvalho Ramos, M. Risk factors for recovery of imipenem- or ceftazidime-resistant Pseudomonas aeruginosa among patients admitted to a teaching hospital in Brazil. Infect Control Hosp Epidemiol 2006; 27 901906 (in this issue).Google Scholar
5.Harris, AD, Karchmer, TB, Carmeli, Y, Samore, MH. Methodological principles of case-control studies that analyzed risk factors for antibiotic resistance: a systematic review. Clin Infect Dis 2001; 32:10551061.Google Scholar
6.Kaye, KS, Harris, AD, Samore, M, Carmeli, Y. The case-case-control study design: addressing the limitation of risk factor studies for antimicrobial resistance. Infect Control Hosp Epidemiol 2005; 26:346351.Google Scholar
7.Harris, AD, Smith, D, Johnson, JA, Bradham, DD, Roghmann, MC. Risk factors for imipenem-resistant Pseudomonas aeruginosa among hospitalized patients. Clin Infect Dis 2002; 34:340345.Google Scholar
8.Troillet, N, Samore, MH, Carmeli, Y. Imipenem-resistant Pseudomonas aeruginosa: risk factors and antibiotic susceptibility patterns. Clin Infect Dis 1997; 25:10941098.Google Scholar
9.Gales, AC, Menezes, LC, Silbert, S, Sader, HS. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-beta-lactamase. J Antimicrob Chemother 2003; 52:699702.Google Scholar
10.Aubert, G, Pozzetto, B, Dorche, G. Emergence of quinolone-imipenem cross-resistance in Pseudomonas aeruginosa after fluoroquinolone therapy. J Antimicrob Chemother 1992; 29:307312.Google Scholar
11.Kollef, MH, Sherman, G, Ward, S, Fraser, VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999; 115:462474.Google Scholar
12.Marra, AR, Pereira, CAP, Gales, AC, et al. Bloodstream infections with metallo-beta-lactamase-producing Pseudomonas aeruginosa: epidemiology, microbiology, and clinical outcomes. Antimicrob Agents Chemother 2006; 50:388390.CrossRefGoogle ScholarPubMed
13.Kang, CI, Kim, SH, Park, WB, et al. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob Agents Chemother 2005; 49:760766.Google Scholar
14.Gomes, CC, Vormittag, E, Santos, CR, Levin, AS. Nosocomial infection with cephalosporin-resistant Klebsiella pneumoniae is not associated with increased mortality. Infect Control Hosp Epidemiol 2006; 27 907912 (in this issue).CrossRefGoogle Scholar
15.Ibrahim, EH, Sherman, G, Ward, S, Fraser, VJ, Kollef, MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000; 118:146155.CrossRefGoogle ScholarPubMed
16.Hyle, EP, Lipworth, AD, Zaoutis, TE, Nachamkin, I, Bilker, WB, Lautenbach, E. Impact of inadequate initial antimicrobial therapy on mortality in infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae. Arch Intern Med 2005; 165:13751380.CrossRefGoogle Scholar
17.Ramphal, R, Ambrose, PG. Extended-spectrum beta-lactamases and clinical outcomes: current data. Clin Infect Dis 2006; 42(Suppl 4):S164S172.CrossRefGoogle ScholarPubMed
18.Harbarth, S, Garbino, J, Pugin, J, Romand, JA, Lew, D, Pittet, D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 2003; 115:529535.Google Scholar
19.Bates, DW, Pruess, KE, Lee, TH. How bad are bacteremia and sepsis? Outcomes in a cohort with suspected bacteremia. Arch Intern Med 1995; 155:593598.Google Scholar
20.Dupont, H, Montravers, P, Gauzit, R, et al. Outcome of postoperative pneumonia in the EOLE study. Intensive Care Med 2003; 29:179188.Google Scholar
21.Paterson, DL, Ko, WC, Von Gottberg, A, et al. Outcome of cephalosporin treatment serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 2001; 39:22062212.Google Scholar
22.Andes, D, Craig, WA. Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect 2005; 11(Suppl 6):1017.Google Scholar
23.Gunale, A, von Baum, P, Wendt, C. Survival of cephalosporin-resistant Enterobacteriaceae on fingers. Infect Control Hosp Epidemiol 2006; 27: 974977 (in this issue).CrossRefGoogle ScholarPubMed