Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-29T23:46:03.506Z Has data issue: false hasContentIssue false

Improved use of antibiotics following implementation of antimicrobial stewardship in a neonatal intensive care unit

Published online by Cambridge University Press:  11 November 2024

Arna Yr Karelsdottir
Affiliation:
Faculty of Medicine, University of Iceland, Reykjavík, Iceland
Thorunn Oskarsdottir
Affiliation:
Department of Pharmacy, Landspitali – University Hospital, Reykjavík, Iceland
Olof Eir Hoffritz
Affiliation:
Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavík, Iceland
Thordur Thorkelsson
Affiliation:
Faculty of Medicine, University of Iceland, Reykjavík, Iceland Children’s Hospital Iceland, Landspitali – University Hospital, Reykjavík, Iceland
Asgeir Haraldsson
Affiliation:
Faculty of Medicine, University of Iceland, Reykjavík, Iceland Children’s Hospital Iceland, Landspitali – University Hospital, Reykjavík, Iceland
Valtyr Thors*
Affiliation:
Faculty of Medicine, University of Iceland, Reykjavík, Iceland Children’s Hospital Iceland, Landspitali – University Hospital, Reykjavík, Iceland
*
Corresponding author: Valtyr Thors; Email: [email protected]

Abstract

Introduction:

Inappropriate antibiotic use in infants can have multiple adverse effects and contribute to the development of bacteria resistant to antimicrobials. Antimicrobial stewardship programs can reduce unnecessary antibiotic use in children. The aim of this study was to evaluate the effect of an antimicrobial stewardship program implemented in 2017 in the Neonatal Intensive Care Unit (NICU) at The Children’s Hospital Iceland.

Materials and methods:

The study included all infants who were admitted to the NICU during the study period (January 1st 2012–October 31st 2020). Data was collected from hospital records. Three periods were defined: preimplementation (2012–2014), peri-implementation (2015–2016) and postimplementation (2017–October 2020). Antibiotic use was quantified using days of therapy (DOT) per 1000 bed days (BD). For statistical analysis the pre- and postimplementation periods were compared.

Results:

Antibiotics were administered in 38.6% (1372) of admissions to the NICU during the study period. Antimicrobial use per year decreased from 584.6 to 317.1 DOT/1000 BD per year (P < 0.001). Use of broad-spectrum antibiotics decreased significantly. The average number of BD per month decreased from 297.8 to 220.9 BD/month (P = 0.0096). There were no significant changes in the length of stay for each infant or the proportion of readmissions or retreatment.

Conclusion:

Increased awareness of appropriate use of antimicrobials in the NICU led to shorter treatments and less use of broad-spectrum antibiotics. No increase in adverse effects such as readmissions or retreatment was observed.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Patel, SV, Vergnano, S. The impact of paediatric antimicrobial stewardship programmes on patient outcomes. Curr Opin Infect Dis 2018;31:216–23.CrossRefGoogle ScholarPubMed
Principi, N, Esposito, S. Antimicrobial stewardship in paediatrics. BMC Infect Dis 2016;16:424.CrossRefGoogle ScholarPubMed
Nichols, K, Stoffella, S, Meyers, R, Girotto, J. Pediatric antimicrobial stewardship programs. J Pediatr Pharmacol Ther 2017;22:7780.Google ScholarPubMed
Alexander, VN, Northrup, V, Bizzarro, MJ. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr 2011;159:392–7.CrossRefGoogle ScholarPubMed
Cantey, JB, Huffman, LW, Subramanian, A, et al. Antibiotic exposure and risk for death or bronchopulmonary dysplasia in very low birth weight infants. J Pediatr 2017;181:28993.e1.CrossRefGoogle ScholarPubMed
Cotten, CM, Taylor, S, Stoll, B, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 2009;123:5866.CrossRefGoogle ScholarPubMed
Kuppala, VS, Meinzen-Derr, J, Morrow, AL, Schibler, KR. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J Pediatr 2011;159:720–5.CrossRefGoogle ScholarPubMed
Cotten, CM, McDonald, S, Stoll, B, et al. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics 2006;118:717–22.CrossRefGoogle ScholarPubMed
Saiman, L, Ludington, E, Dawson, JD, et al. Risk factors for Candida species colonization of neonatal intensive care unit patients. Pediatr Infect Dis J 2001;20:1119–24.CrossRefGoogle ScholarPubMed
Lee, JH, Hornik, CP, Benjamin, DK, Jr., et al. Risk factors for invasive candidiasis in infants >1500 g birth weight. Pediatr Infect Dis J 2013;32:222–6.CrossRefGoogle ScholarPubMed
Greenwood, C, Morrow, AL, Lagomarcino, AJ, et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr 2014;165:23–9.CrossRefGoogle ScholarPubMed
Patel, SJ, Saiman, L. Antibiotic resistance in neonatal intensive care unit pathogens: mechanisms, clinical impact, and prevention including antibiotic stewardship. Clin Perinatol 2010;37:547–63.CrossRefGoogle ScholarPubMed
McPherson, C, Liviskie, C, Zeller, B, Nelson, MP, Newland, JG. Antimicrobial stewardship in neonates: challenges and opportunities. Neonatal Netw 2018;37:116–23.CrossRefGoogle ScholarPubMed
Murk, W, Risnes, KR, Bracken, MB. Prenatal or early-life exposure to antibiotics and risk of childhood asthma: a systematic review. Pediatrics 2011;127:1125–38.CrossRefGoogle ScholarPubMed
Penders, J, Kummeling, I, Thijs, C. Infant antibiotic use and wheeze and asthma risk: a systematic review and meta-analysis. Eur Respir J 2011;38:295302.CrossRefGoogle Scholar
Neuman, H, Forsythe, P, Uzan, A, Avni, O, Koren, O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev 2018;42:489–99.Google Scholar
Derrien, M, Alvarez, AS, de Vos, WM. The gut microbiota in the first decade of life. Trends Microbiol 2019;27:9971010.CrossRefGoogle ScholarPubMed
López Romo, A, Quirós, R. Appropriate use of antibiotics: an unmet need. Therapeutic Advances in Urology 2019;11:1756287219832174.CrossRefGoogle ScholarPubMed
Garau, J, Bassetti, M. Role of pharmacists in antimicrobial stewardship programmes. Int J Clin Pharm 2018;40:948–52.CrossRefGoogle ScholarPubMed
Hand, K. Antibiotic stewardship. Clinical Medicine 2013;13:499503.CrossRefGoogle ScholarPubMed
Hughes, SJ, Moore, LS. Antimicrobial stewardship. Br J Hosp Med (Lond) 2019;80:C42C5.CrossRefGoogle ScholarPubMed
Sabtu, N, Enoch, DA, Brown, NM. Antibiotic resistance: what, why, where, when and how? Br Med Bull 2015;116:105–13.Google Scholar
Velasco-Arnaiz, E, Simó-Nebot, S, Ríos-Barnés, M, et al. Benefits of a pediatric antimicrobial stewardship program in antimicrobial use and quality of prescriptions in a referral children’s hospital. J Pediatr 2020;225:22230.e1.CrossRefGoogle Scholar
Kreitmeyr, K, von Both, U, Pecar, A, et al. Pediatric antibiotic stewardship: successful interventions to reduce broad-spectrum antibiotic use on general pediatric wards. Infection 2017;45:493504.CrossRefGoogle ScholarPubMed
Di Pentima, MC, Chan, S, Hossain, J. Benefits of a pediatric antimicrobial stewardship program at a children’s Pediatrics 2011;128:1062–70.Google Scholar
Doron, S, Davidson, LE. Antimicrobial stewardship. Mayo Clin Proc. 2011;86:1113–23.CrossRefGoogle ScholarPubMed
Börn - Sýklalyfjaleiðbeiningar LSH: Landspítali University Hospital; [Available from: https://viewer.microguide.global/LUH/PAED9#content,94be83ac-bba7-4f0e-922d-bab66ebdba93. Accessed April 15, 2024.Google Scholar
Premature birth: CDC; 2022 [Available from: https://www.cdc.gov/reproductivehealth/features/premature-birth/index.html. Accessed April 10, 2024.Google Scholar
Donà, D, Barbieri, E, Daverio, M, et al. Implementation and impact of pediatric antimicrobial stewardship programs: a systematic scoping review. Antimicrob Resist Infect Control 2020;9:3.CrossRefGoogle ScholarPubMed
Cantey, JB, Wozniak, PS, Sánchez, PJ. Prospective surveillance of antibiotic use in the neonatal intensive care unit: results from the SCOUT study. Pediatr Infect Dis J 2015;34:267–72.CrossRefGoogle ScholarPubMed
Newby, B, Mok, SHS, Sun, Y. Antimicrobial stewardship intervention to reduce unnecessary antibiotic doses in neonates. Am J Infect Control 2021;49:126–7.CrossRefGoogle ScholarPubMed
Lima, DMD, Rezende, RV, Diniz, LMO, Anchieta, LM, de Castro Romanelli, RM. Evaluation of antimicrobial consumption in the neonatal population undergoing antimicrobial stewardship programmes: a systematic review. J Hosp Infect 2023;135:106–18.CrossRefGoogle ScholarPubMed
Stocker, M, Buonocore, G, Zimmermann, L, et al. Management of suspected early-onset neonatal sepsis (EONS) 2022 [Available from: https://newborn-health-standards.org/standards/standards-english/medical-care-clinical-practice/management-of-suspected-early-onset-neonatal-sepsis-eons/. Accessed May 1, 2024.Google Scholar
Baker, DW, Hyun, D, Neuhauser, MM, Bhatt, J, Srinivasan, A. Leading practices in antimicrobial stewardship: conference summary. Jt Comm J Qual Patient Saf 2019;45:517–23.Google ScholarPubMed
Meister, AL, Doheny, KK, Travagli, RA. Necrotizing enterocolitis: It’s not all in the gut. Exp Biol Med (Maywood) 2020;245:8595.CrossRefGoogle Scholar
Supplementary material: File

Karelsdottir et al. supplementary material 1

Karelsdottir et al. supplementary material
Download Karelsdottir et al. supplementary material 1(File)
File 31.1 KB
Supplementary material: File

Karelsdottir et al. supplementary material 2

Karelsdottir et al. supplementary material
Download Karelsdottir et al. supplementary material 2(File)
File 844.2 KB