Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T01:41:33.076Z Has data issue: false hasContentIssue false

Genotypic Approaches to the Diagnosis of Bacterial Infections: Plasmid Analyses and Gene Probes

Published online by Cambridge University Press:  02 January 2015

Kaye Wachsmuth*
Affiliation:
Molecular Biology Laboratory, Biotechnology Branch, Division of Bacterial Diseases, Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia
*
Biotechnology Branch, Center for Infectious Diseases, Centers for Disease Control, Atlanta, GA30333

Abstract

Practical genetic approaches have been helpful in the diagnosis, epidemiology, and taxonomy of bacterial pathogens encountered in our laboratory at the Centers for Disease Control. There are many examples in which plasmid profiles have been used to define epidemic strains of enteric bacteria, staphylococci, pseudomonads, vibrios, and other pathogenic bacteria. Current methodologies should allow the microbiology laboratory to use plasmid profiles routinely and to identify plasmids associated with bacterial pathogenesis.

Simplified DNA-DNA hybridization procedures have been used in our laboratory to survey or “probe” thousands of Escherichia coli colonies for the presence of enterotoxin genes, eliminating traditional tissue culture or animal assays. Research scientists continue to develop gene probes for a number of bacterial toxins and hemolysins and for the identification of pathogens such as legionellae and salmonellae. These and other probes as well as hybridization “kits” may be commercially available to diagnostic laboratories within the next few years.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Taylor, DN, Wachsmuth, IK, Shangkuan, Y, et al: Salmonellosis associated with marijuana: A multistate outbreak traced by plasmid fingerprinting. N Engl J Med 1982; 306:10931095.Google Scholar
2. Parisi, JT, Hecht, DW: Plasmid profiles in epidemiologic studies of infections by Staphylococcus epidermidis . J Infect Dis 1980; 141:637643.Google Scholar
3. John, JF, McKee, KT, Twitty, JA, et al: Molecular epidemiology of sequential nursery epidemics caused by multiresistant Klebsiella pneumoniae . J Pediatr 1983; 102:825830.Google Scholar
4. Archer, GL, Vishniavsky, N, Stiver, HG: Plasmid pattern analysis of Staphylococcus epidermidis isolates from patients with prosthetic valve endocarditis. Infect Immun 1982; 35:627632.Google Scholar
5. Schaberg, DR, Tompkins, LS, Falkow, S: Use of agarose gel electrophoresis of plasmid deoxyribonucleic acid to fingerprint gram-negative bacilli. J Clin Microbiol 1981; 13:11051108.Google Scholar
6. Watson, JD: Molecular Biology of the Gene, ed 3. Menlo Park, California, WA Benjamin, Inc, 1976.Google Scholar
7. Cohen, SN, Shapiro, JA: Transposable genetic elements. Sci Am 1980; 242:4049.Google Scholar
8. Levy, SB, Clowes, RC, Koenig, EL (eds): Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids. New York, Plenum Press, 1981.Google Scholar
9. Falkow, S: Infectious Multiple Drug Resistance. London, Pion, 1975.Google Scholar
10. Tompkins, LS, Plorde, JJ, Falkow, S: Molecular analysis of R-factors from multi-resistant nosocomial isolates. J Infect Dis 1980; 141:625636.Google Scholar
11. Tantulavanich, S, Olexy, VM, Prasad, TR, et al: An R plasmid of broad host-range, coding for resistance to nine antimicrobial agents endemic in gram-negative nosocomial isolates. J Med Microbiol 1981; 14:371380.Google Scholar
12. Cohen, ML, Wong, ES, Falkow, S: Common R-plasmids in Staphylococcus aureus and Staphylococcus epidermidis during a nosocomial Staphylococcus aureus outbreak. Antimicrob Agents Chemother 1982; 21:210215.Google Scholar
13. Threlfall, EJ, Rowe, B, Huq, I: Plasmid-encoded multiple antibiotic resistance in Vibrio cholerae El Tor from Bangladesh. Lancet 1980; i:12471248.Google Scholar
14. Levy, SB: Letter to the editor. N Engl J Med 1982; 307:61.Google Scholar
15. Wachsmuth, K: Laboratory detection of enterotoxins, in Ellner, P (ed): Infectious Diarrheal Diseases: Current Concepts and Laboratory Procedures. New York, Marcel Dekker, Inc., 1984, pp 93115.Google Scholar
16. Mikesell, P, Ivins, BE, Ristrophy, JD, et al: Evidence for plasmid-mediated toxin production in Bacillus anthracis . Infect Immun 1983; 39:371376.CrossRefGoogle ScholarPubMed
17. Kopecko, DJ, Washington, O, Formal, SB: Genetic and physical evidence for plasmid control of Shigella sonnei Form I cell surface antigen. Infect Immun 1980; 29:207214.Google Scholar
18. Harris, JR, Wachsmuth, IK, Davis, BR, et al: A large molecular-weight plasmid correlates with Escherichia coli enteroinvasiveness. Infect Immun 1982; 37:12951298.Google Scholar
19. Gemski, P, Lazere, JR, Casey, T, et al: Plasmid associated with pathogenicity and calcium dependency of Yersinia enterocolitica . Infect Immun 1980; 27:682685.Google Scholar
20. Meyers, JA, Sanchez, D, Elwell, LP, et al: Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol 1976; 127:15291537.CrossRefGoogle ScholarPubMed
21. Birnboim, HC, Doly, J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7:15131523.Google Scholar
22. Roberts, RJ: The role of restriction endonucleases in genetic engineering, in Beers, RF Jr, Bassett, EG (eds): Recombinant Molecules: Impact on Science and Society. Raven Press, New York, 1977, pp 2132.Google Scholar
23. Brenner, DJ, Fanning, GR, Johnson, KE, et al: Polynucleotide sequence relationships among members of the Enterobacteriaceae . J Bacteriol 1969; 98:637650.Google Scholar
24. Ørskov, F, Ørskov, I: Summary of a workshop on the clone concept in the epidemiology, taxonomy and evolution of the Enterobacteriaceae and other bacteria. J Infect Dis 1983; 148:346357.Google Scholar
25. Parrott, PL, Terry, PM, Whitworth, EN, et al: Pseudomonas aeruginosa peritonitis associated with contamination of a poloxamer-iodine solution. Lancet 1982; ii:683685.Google Scholar
26. Holmberg, SD, Wachsmuth, IK, Hickman-Brenner, F, et al: Comparison of plasmid profile, antimicrobial susceptibility testing, and phage type. J Clin Microbiol 1984; 19:100104.Google Scholar
27. Muytjens, HL, Zanen, HC, Sonderkamp, HJ, et al: Neonatal meningitis and sepsis due to Enterobacter sakazakii . J Clin Microbiol 1983; 18:115120.Google Scholar
28. Wells, JG, Davis, BR, Wachsmuth, IK, et al: Laboratory investigation of outbreaks of hemorrhagic colitis associated with a rare Escherichia coli serotype. J Clin Microbiol 1983; 18:512520.Google Scholar
29. Rubens, CE, Farrar, WE, McGee, ZA, et al: Evolution of a plasmid mediating resistance to multiple antimicrobial agents during a prolonged epidemic of nosocomial infections. J Infect Dis 1981; 143:170181.Google Scholar
30. Shlaes, DM, Vartian, C, Currie, CA: Variability in DNA sequence of closely related nosocomial gentamicin-resistance plasmids. J Infect Dis 1983; 148:10131018.Google Scholar
31. Wachsmuth, IK, Falkow, S, Ryder, RW: Plasmid-mediated properties of a heat-stable enterotoxin-producing Escherichia coli associated with infantile diarrhea. Infect Immun 1976; 14:403407.Google Scholar
32. Wachsmuth, K, DeBoy, J, Birkness, K, et al: The genetic transfer of antimicrobial resistance and enterotoxigenicity among Escherichia coli . Antimicrob Agents Chemother 1983; 23:278283.Google Scholar
33. Falkow, S, Baron, LS: Episomic element in a strain of Salmonella typhosa . J Bacteriol 1962; 84:581589.Google Scholar
34. Kopecko, DJ, Vickroy, J, Johnson, EM, et al: Molecular and genetic analyses of plasmids responsible for lactose catabolism in Salmonellae isolated from diseased humans, in Mitsuhashi, S, Rosival, L, Kremery, V: Antibiotic Resistance: Transposition and other mechanisms. Deerfield Beach, FL, Springer Verlag, 1980, pp 5964.Google Scholar
35. Farmer, JJ, Hickman, FW, Brenner, DJ, et al: Unusual Enterobacteriaceae: “Proteus rettegeri” that “change” into Providencia stuartii . J Clin Microbiol 1977; 6:373378.Google Scholar
36. Wachsmuth, IK, Davis, BR, Allen, S: Ureolytic Escherichia coli of human origin: A serologic, epidemiologic, and genetic analysis. J Clin Microbiol 1979; 10:897902.Google Scholar
37. Stoleru, GH, Gerbaud, GR, Bouanchaud, DH, et al: Etude d'un plasmide transferable determinant le production d'H2S et la resistance a la tetracycline chez Escherichia coli. Ann Immunol 1972; 123:743754.Google Scholar
38. Sata, G, Asagi, M, Oka, C, et al: Transmissible citrate-utilizing ability in Escherichia coli isolated from pigeons, pigs, and catde. Microbiol Immunol 1978; 22:357360.Google Scholar
39. McCarthy, LR: The impact of new technology on clinical microbiology. Clinical Microbiology Newsletter 1983; 5(May 15):6872.Google Scholar
40. Fennel, CL, Totten, PA, Quinn, TC, et al: Characterization of Campylobacter-like organisms isolated from homosexual men. J Infect Dis 1984; 149:5866.Google Scholar
41. Totten, PA, Holmes, KK, Handsfield, , et al: DNA hybridization technique for the detection of Neisseria gonorrhoeae in men with urethritis. J Infect Dis 1983; 148:462471.CrossRefGoogle ScholarPubMed
42. Fitts, R, Diamond, M, Hamilton, C, et al: DNA-DNA hybridization assay for detection of Salmonella spp. in foods. Appl Environ Microbiol 1983; 46:11461151.CrossRefGoogle ScholarPubMed
43. Moseley, SL, Eschevarria, P, Seriwatana, J, et al: Identification of enterotoxigenic Escherichia coli by colony hybridization using three enterotoxin gene probes. J Infect Dis 1982; 145:863869.Google Scholar
44. Kaper, JB, Moseley, SL, Falkow, S: Molecular characterization of environmental and nontoxigenic strains of Vibrio cholerae. Infect Immun 1981; 32:661667.Google Scholar
45. Groman, N, Cianciotto, N, Bjorn, M, et al: Detection and expression of DNA homologous to the tox gene in nontoxigenic isolates of Corynebacterium diphtheria . Infect Immun 1983; 42:4856.Google Scholar
46. Georges, MC, Wachsmuth, IK, Birkness, KA, et al: Genetic probes for enterotoxigenic Escherichia coli isolated from childhood diarrhea in the Central African Republic. J Clin Microbiol 1983; 18:199202.Google Scholar
47. Echeverria, P, Seriwatana, J, Chityothin, O, et al: Detection of enterotoxigenic Escherichia coli in water by filter hybridization with enterotoxin gene probes. J Clin Microbiol 1983; 16:10861090.Google Scholar
48. Old, RW, Primrose, SB: Principles of Gene Manipulation. An introduction to Genetic Engineering. Berkeley, Univeristy of California Press, 1980.Google Scholar
49. Singer, RH, Ward, DC: Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. Proc Natl Acad Sci USA 1982; 79:73317335.Google Scholar
50. Rigby, PWJ, Dieckmann, M, Rhodes, C, et al: Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 1977; 113:237251.Google Scholar
51. Grunstein, M, Hogness, DS: Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 1975; 72:39613965.CrossRefGoogle ScholarPubMed
52. Southern, EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503517.Google Scholar
53. Blake, PA, Wachsmuth, IK, Davis, B, et al: Toxigenic Vibrio cholerae 01 strain from Mexico is identical to United States isolates. Lancet 1983; October 5:912.Google Scholar
54. Cook, WL, Wachsmuth, IK, Johnson, SB, et al: Persistence of plasmids, cholera toxin genes and phrophage DNA in classical Vibrio cholerae 01 . Infect Immun 1984; 45:222226.Google Scholar
55. Kohne, DE, Steigerwalt, AG, Brenner, DT: A nucleic acid probe specific for members of the genus Legionella. Proceedings from the Second International Symposium on Legionella, Atlanta, GA. American Society of Microbiology, Washington, DC, to be published.Google Scholar