Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T00:26:26.976Z Has data issue: false hasContentIssue false

Do Antibiotic Combinations Prevent the Emergence of Resistant Organisms?

Published online by Cambridge University Press:  21 June 2016

William A. Craig*
Affiliation:
William S. Middleton Memorial Veterans Hospital and University of Wisconsin, Madison, Wisconsin
*
Wm. S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705

Extract

Antibiotic combinations are often used in the therapy of infectious diseases to broaden the antibacterial spectrum and to enhance antimicrobial activity. Another potential reason for combination therapy is to reduce or prevent the emergence of resistant organisms during therapy. Antituberculous chemotherapy provides a classic example in which drug combinations have successfully prevented the emergence of drug-resistant organisms and improved clinical outcome. The purpose of this brief report is to review the success of combination therapy in preventing resistance in more common bacterial infections.

The emergence of resistance during single-drug therapy is a well-documented clinical phenomenon, especially with the broad-spectrum ß-lactams against gram-negative bacilli. As with Mycobacterium tuberculosis, the resistant organisms are generally thought to be naturally occurring mutants selected by drug exposure. Because mutation frequencies appear to vary from 10-6 to 10-8, it is not surprising that emergence of resistant organisms observed clinically occurs primarily at sites of high organism density, such as the respiratory and urinary tracts.

Type
Special Sections
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Johnston, RF, Wildrick, KH: “State of the art” review. The impact of chemotherapy on the care of patients with tuberculosis. Am Rev Respir Dis 1974; 109:636664.Google Scholar
2. Sanders, CC, Sanders, WE Jr: Emergence of resistance during therapy with the newer beta-lactam antibiotics: Role of inducible beta-lactamases and implications for the future. Rev Infect Dis 1983; 5:639648.CrossRefGoogle ScholarPubMed
3. Neu, HC: Changing mechanisms of bacterial resistance. Am J Med 1984; 77(1B):1123.CrossRefGoogle ScholarPubMed
4. Vu, H, Nakaido, H: Role of ß-lactam hydrolysis in the mechanism of resistance of a ß-lactamse constitutive Enterobacter cloacae strain to expanded spectrum ß-lactams. Antimicrob Agents Chemother 1985; 27:393398.CrossRefGoogle Scholar
5. Livermore, DM, Riddle, SJ, Davy, KWM: Hydrolytic model for cefotaxime and ceftriaxone resistance in ß-lactamase-derepressed Enterobacter cloacae . J Infect Dis 1986; 153:619622.CrossRefGoogle ScholarPubMed
6. Werner, V, Sanders, CC, Sanders, WE Jr.. et al: Role of ß-lactmases and outer membrane proteins in multiple ß-lactam resistance of Enterobacter cloacae . Antimicrob Agents Chemother 1985; 27:455459.CrossRefGoogle Scholar
7. Lynch, MJ, Drusano, GL, Mobley, HLT: Emergence of resistance to imipenem in Pseudomonas aeruginosa . Antimicrob Agents Chemother 1987; 31:18921896.CrossRefGoogle ScholarPubMed
8. Godfrey, AJ, Bryan, LE. Rabin, HR: ß-lartam-resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrob Agents Chemother 1981: 19:705711.CrossRefGoogle ScholarPubMed
9. Calandra, G, Ricci, F, Wang, C, et al: Cross-resistance and imipenem. Lancet 1986; 2:340341.CrossRefGoogle ScholarPubMed
10. Marchou, B, Bellido, F, Charnas, R, et al: Contribution of ß-lactamze hydrolysis and outer membrane permeability to ceftriaxone resistance in Enterobacter cloacae . Antimicrob Agents Chemother 1987; 31:15891595.CrossRefGoogle ScholarPubMed
11. Sanders, CC, Sanders, WE Jr, Goering, RV. et al: Selection of multiple antibiotic resistance by quinolones. ß-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes . Antimicrob Agents Chemother 1984; 26:797801.CrossRefGoogle Scholar
12. Goldstein, FW, Gutmann, L. Williamson, R, et al: In vivo and in vitro emergence of simultaneous resistance to both ß-lactam and aminoglycoside antibiotics in a strain of Serratia marcescens . Ann Microbial (Inst Pasteur) 1983; 134A:329337.CrossRefGoogle Scholar
13. Philips, 1, King, BA. Shannon, KP: The mechanisms of resistance to aminoglycosides in the genus Pseudomonas . J Antimicrob Chemother 1978: 4: 121129.CrossRefGoogle Scholar
14. Davies, J, Courvalin, P: Mechanisms of resistance to aminoglycosides. Am J Med 1977: 62:868872.CrossRefGoogle ScholarPubMed
15. Musher, DM, Baughn, RE, Templeton, GB, et al: Emergence of variant forms of Staphylococcus aureus after exposure to gentamicin and infectivity of the variants in experimental animals. J Infect Dis 1977; 136:360369.CrossRefGoogle ScholarPubMed
16. Musher, DM. Baughn, RE. Merrell, CL: Selection of small colony variants of Enterobacteriaceae by in vitro exposure to aminoglycosides: Pathogenicity for experimental animals. J Infect Dis 1979; 140:209214.CrossRefGoogle ScholarPubMed
17. Bryan, LE, Haraphongse, R, Van Den Elzen, HM: Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modifications. J Antibiot 1976; 29:743753.CrossRefGoogle Scholar
18. Gaman, W, Cates, C, Snelling, CFT, et al: Emergence of gentamicin- and carbenicillin-resistant Pseudomonas aeruginosa in a hospital environment. Antimicrob Agents Chemother 1976; 9:474480.CrossRefGoogle Scholar
19. McNeill, WF, John, JF Jr, Twitty, JA: Aminoglycoside resistance in Pseudomonas aeruginosa isolated from cystic fibrosis patients. Am J Clin Pathol 1984; 81:742747.CrossRefGoogle ScholarPubMed
20. Shimizu, K. Kumada, T, Hsieh, W-C. et al: Comparison of aminoglycoside resistance patterns in Japan, Formosa, Korea. Chile. and the United States. Antimicrob Agents Chemother 1985: 28:282288.CrossRefGoogle ScholarPubMed
21. Gerber, AU, Craig, WA: Aminoglycoside-selected subpopulations of Pseudomonas aeruginosa . J Lab Clin Med 1982; 100:671681.Google ScholarPubMed
22. Olson, B. Weinstein, BA, Nathan, C, et al: Occult aminoglycoside resistance in Pseudomonas aeruginosa: Epidemiology and implications for therapy and control. J Infect Dis 1985; 152:769777.CrossRefGoogle ScholarPubMed
23. Neu, HC: Bacterial resistance to fluoroquinolones. Rev Infect Dis 1988; 10(suppl 1):S57S63.CrossRefGoogle ScholarPubMed
24. Smith, JT: Mutational resistance to 4-quinolone antibacterial agents. Eur J Clin Microbiol 1984: 3:347350.CrossRefGoogle ScholarPubMed
25. Daikos, GL, Lolans, VT, Jackson, GG: Alterations in outer membrane proteins of Pseudomonas aeruginosa associated with selective resistance to quinolones. Antimicrob Agents Chemother 1988: 32:785787.CrossRefGoogle ScholarPubMed
26. Aovama, H. Sato, K. Kato, T, et al: Norfloxacin resistance in a clinical isolate of Escherichia coli . Antimicrob Agents Chemother 1987; 31: 16401641.Google Scholar
27. Michea-Hamzehpour, M, Auckenthaler, R, Regamey, P. et al: Resistance occurring after fluoroquinolone therapy of experimental Pseudomonas aeruginosa peritonitis. Antimicrob Agents Chemother 1987; 31:18031808.CrossRefGoogle ScholarPubMed
28. Blaser, J. Stone, BB, Groner, MC. et al: Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 1987; 31:10541060.CrossRefGoogle Scholar
29. Sanders, CC, Watanakunakorn, C: Emergence of resistance to ß-lactams, aminoglycosides, and quinolones during combination therapy due to Serratia marcescens . J Infect Dis 1986; 153:617619.CrossRefGoogle Scholar
30. Gribble, MJ, Chow, AW, Naiman, SC, et al: Prospective randomized trial of piperacillin monotherapy versus carboxypenicillin-aminoglycoside combination regimens in the empirical treatment of serious bacterial infections. Antimicrob Agents Chemother 1983; 24:388393.CrossRefGoogle ScholarPubMed
31. McLaughlin, FJ, Matthews, WJ Jr, Strieder, DJ. et al: Clinical and bacteriologic responses to three antibiotic regimens for acute exacerbations of cystic fibrosis: Ticarcillin-tobramycin, azlocillin-tobramycin and azlocillin-placebo. J Infect Dis 1983: 147:559567.CrossRefGoogle Scholar
32. Michalsen, H, Bergan, T: Azlocillin with and without an aminoglycoside against respiratory tract infections in children with cystic fibrosis. Scand J Infect Dis 1981; suppl 29:9297.Google ScholarPubMed
33. Michea-Hamzehpour, M, Pechere, J-C, Marchou, B, et al: Combination therapy: A way to limit emergence of resistance. Am J Med 1986; 80(6B): 138142.CrossRefGoogle ScholarPubMed
34. Gerber, AU, Vastola, AP, Brandel, J, et al: Selection of aminglycoside-resistant variants of Pseudomonas aeruginosa in an in vivo model. J Infect Dis 1982: 146:691697.CrossRefGoogle ScholarPubMed
35. Lumish, RM, Norden, CW: Therapy of neutropenic rats infected with Pseudomonas aeruginosa . J Infect Dis 1976; 133:538547.CrossRefGoogle ScholarPubMed
36. Blaser, J, Stone, BB, Groner, C, et al: Impact of netilmicin regimens on the activity of ceftaridime-netilmicin combinations against Pseudomonas aeruginosa in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1985; 28:6468.CrossRefGoogle Scholar
37. Bayer, AS, Lam, K, Norman, D, et al: Amikacin and ceftazidime therapy of experimental right-sided Pseudomonas aeruginosa endocarditis in rabbits. Chemotherapy (Basel) 1985; 31:351361.CrossRefGoogle ScholarPubMed