Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T21:27:11.908Z Has data issue: false hasContentIssue false

A Bundle of Measures to Control an Outbreak of Pseudomonas aeruginosa Associated With P-Trap Contamination

Published online by Cambridge University Press:  08 February 2018

Houssein Gbaguidi-Haore
Affiliation:
Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
Amélie Varin
Affiliation:
Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France
Pascal Cholley
Affiliation:
Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
Michelle Thouverez
Affiliation:
Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
Didier Hocquet
Affiliation:
Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France Centre de Ressources Biologiques–Filière Microbiologique de Besançon, Centre Hospitalier Régional Universitaire, Besançon, France
Xavier Bertrand*
Affiliation:
Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
*
Address correspondence to Xavier Bertrand, Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, 3 boulevard Fleming, Besançon, Cedex 25030, France ([email protected]).

Abstract

OBJECTIVE

To describe an outbreak of multidrug-resistant Pseudomonas aeruginosa in which the hospital waste-pipe system was the likely source of contamination and to report the bundle of measures that facilitated the long-term control of the outbreak.

DESIGN

Outbreak investigation.

SETTING

The hematology unit of a tertiary-care referral center.

PATIENTS

Patients who were colonized or infected with P. aeruginosa belonging to the clonal outbreak.

METHODS

Patients admitted to our 15-bed stem-cell transplantation hematology unit were screened for P. aeruginosa carriage. Pseudomonas aeruginosa isolates were also obtained from diagnostic samples. We assessed the microbiological contamination of P-traps, water and toilets for 42 months. Extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) were screened and identified by polymerase chain reaction (PCR) and sequencing. Molecular typing of ESBL- or MBL-producing isolates was carried out using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST).

RESULTS

From 2009 to 2013, a biclonal outbreak of IMP-19–producing ST235 (11 cases) and IMP-29–producing ST111 (10 cases) of P. aeruginosa occurred. The environmental investigation strongly suggested that P-traps were the reservoirs for the outbreak strains. A bundle of infection control measures, including engineering interventions on water outlets and disinfection of P-traps, controlled the outbreak.

CONCLUSIONS

We report a prolonged outbreak of IMP-producing high-risk clones of P. aeruginosa, for which P-traps seems to play a major role in cross-transmission. It appears essential to implement proactive measures to limit the bacterial load in water fittings of high-risk units.

Infect Control Hosp Epidemiol 2018;39:164–169

Type
Original Articles
Copyright
© 2018 by The Society for Healthcare Epidemiology of America. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kerr, KG, Snelling, AM. Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 2009;73:338344.Google Scholar
2. Venier, AG, Leroyer, C, Slekovec, C, et al. Risk factors for Pseudomonas aeruginosa acquisition in intensive care units: a prospective multicentre study. J Hosp Infect 2014;88:103108.Google Scholar
3. Bedard, E, Prevost, M, Deziel, E. Pseudomonas aeruginosa in premise plumbing of large buildings. MicrobiologyOpen 2016. doi: 10.1002/mbo3.391.Google Scholar
4. Loveday, HP, Wilson, JA, Kerr, K, Pitchers, R, Walker, JT, Browne, J. Association between healthcare water systems and Pseudomonas aeruginosa infections: a rapid systematic review. J Hosp Infect 2014;86:715.Google Scholar
5. Oliver, A, Mulet, X, Lopez-Causape, C, Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Update 2015;21–22:4159.Google Scholar
6. European Committee on Antimicrobial Susceptibility Testing (EUCAST 2013). Breakpoint tables for interpretation of MICs and zone diameters. Version 3.0. 2013. http://www.eucast.org/clinical_breakpoints/.Google Scholar
7. Hocquet, D, Dehecq, B, Bertrand, X, Plesiat, P. Strain-tailored double-disk synergy test detects extended-spectrum oxacillinases in Pseudomonas aeruginosa . J Clin Microbiol 2011;49:22622265.Google Scholar
8. Hocquet, D, Plesiat, P, Dehecq, B, Mariotte, P, Talon, D, Bertrand, X. Nationwide investigation of extended-spectrum beta-lactamases, metallo-beta-lactamases, and extended-spectrum oxacillinases produced by ceftazidime-resistant Pseudomonas aeruginosa strains in France. Antimicrob Agents Chemother 2010;54:35123515.Google Scholar
9. Slekovec, C, Plantin, J, Cholley, P, et al. Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network. PLoS One 2012;7(12): e49300.Google Scholar
10. Kotay, S, Chai, W, Guilford, W, Barry, K, Mathers, AJ. Spread from the sink to the patient: in situ study using green fluorescent protein (GFP)-expressing Escherichia coli to model bacterial dispersion from hand-washing sink-trap reservoirs. Appl Environ Microbiol 2017:83:e0332716.CrossRefGoogle Scholar
11. Stjarne Aspelund, A, Sjostrom, K, Olsson Liljequist, B, Morgelin, M, Melander, E, Pahlman, LI. Acetic acid as a decontamination method for sink drains in a nosocomial outbreak of metallo-beta-lactamase–producing Pseudomonas aeruginosa . J Hosp Infect 2016;94:1320.Google Scholar
12. Hota, S, Hirji, Z, Stockton, K, et al. Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol 2009;30:2533.Google Scholar
13. Potron, A, Poirel, L, Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 2015;45:568585.Google Scholar
14. Neuwirth, C, Siebor, E, Robin, F, Bonnet, R. First occurrence of an IMP metallo-beta-lactamase in Aeromonas caviae: IMP-19 in an isolate from France. Antimicrob Agents Chemother 2007;51:44864488.Google Scholar
15. Amoureux, L, Riedweg, K, Chapuis, A, et al. Nosocomial infections with IMP-19–producing Pseudomonas aeruginosa linked to contaminated sinks, France. Emerg Infect Dis 2017;23:304307.Google Scholar
16. Jeannot, K, Poirel, L, Robert-Nicoud, M, Cholley, P, Nordmann, P, Plesiat, P. IMP-29, a novel IMP-type metallo-beta-lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2012;56:21872190.CrossRefGoogle ScholarPubMed