Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T20:20:00.507Z Has data issue: false hasContentIssue false

Bacterial and Fungal Counts in Hospital Air: Comparative Yields for 4 Sieve Impactor Air Samplers With 2 Culture Media

Published online by Cambridge University Press:  21 June 2016

Jean-Pierre Gangneux*
Affiliation:
Laboratoire de Parasitologie-Mycologie etUnité d'Hygiène hospitalière, Centre Hospitaller Universitaire Pontchaillou, Rennes, France
Florence Robert-Gangneux
Affiliation:
Laboratoire de Biologie etUnité d'Hygiène Hospitalière, Hôpital Broussais, Saint-Malo, France
Guirec Gicquel
Affiliation:
Laboratoire de Parasitologie-Mycologie etUnité d'Hygiène hospitalière, Centre Hospitaller Universitaire Pontchaillou, Rennes, France
Jean-Jacques Tanquerel
Affiliation:
Laboratoire de Biologie etUnité d'Hygiène Hospitalière, Hôpital Broussais, Saint-Malo, France
Sylviane Chevrier
Affiliation:
Laboratoire de Parasitologie-Mycologie etUnité d'Hygiène hospitalière, Centre Hospitaller Universitaire Pontchaillou, Rennes, France
Magali Poisson
Affiliation:
Laboratoire de Parasitologie-Mycologie etUnité d'Hygiène hospitalière, Centre Hospitaller Universitaire Pontchaillou, Rennes, France
Martine Aupée
Affiliation:
Laboratoire de Parasitologie-Mycologie etUnité d'Hygiène hospitalière, Centre Hospitaller Universitaire Pontchaillou, Rennes, France
Claude Guiguen
Affiliation:
Laboratoire de Parasitologie-Mycologie etUnité d'Hygiène hospitalière, Centre Hospitaller Universitaire Pontchaillou, Rennes, France
*
Laboratoire de Parasitologie-Mycologie, CHU Pontchaillou, 1 Rue Henri le Guilloux, 35000 Rennes, France ([email protected])

Abstract

We compared the yields of 4 recently developed sieve impactor air samplers that meet international standard ISO 14698-1, using 2 growth media (tryptic soy agar and malt extract agar) in real conditions of use. Several hospital sites expected to have different densities of airborne microflora were selected in 2 hospitals. The Samplair MK2, Air Ideal, and Mas-100 samplers yielded higher bacterial counts than did the SAS Super-100 device (P<.05). No significant differences in fungal counts were noted between the 4 devices. The use of malt extract agar in addition to tryptic soy agar significantly improved the fungal yield.

Type
Concise Communications
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tablan, OC, Anderson, LJ, Besser, R, Bridges, C, Hajjeh, R; Centers for Disease Control and Prevention (CDC) and the Healthcare Infection Control Practices Advisory Committee. Guidelines for preventing healthcare–associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep 2004; 53:136.Google ScholarPubMed
2. Carter, CD, Barr, BA. Infection control issues in construction and renovation. Infect Control Hosp Epidemiol 1997; 18:587596.Google Scholar
3. Vanderbergh, MFQ, Verweij, PE, Voss, A. Epidemiology of nosocomial fungal infections: invasive aspergillosis and the environment. Diagn Microbiol Infect Dis 1999; 34:221227.Google Scholar
4. Walsh, TJ, Dixon, DM. Nosocomial aspergillosis: environmental microbiology, hospital epidemiology, diagnosis and treatment. Eur J Epidemiol 1989;5:131142.CrossRefGoogle ScholarPubMed
5. Hospenthal, DR, Kwon-Chung, KJ, Bennett, JE. Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Med Mycol 1998; 36:165168.CrossRefGoogle Scholar
6. Alberti, C, Bouakline, A, Ribaud, P, et al. Relationship between environmental fungal contamination and the incidence of invasive aspergillosis in haematology patients. J Hosp Infect 2001; 48:198206.Google Scholar
7. Gangneux, JP, Bretagne, S, Cordonnier, C, et al. Prevention of nosocomial fungal infection: the French approach. Clin Infect Dis 2002; 35:343346.Google Scholar
8. Gangneux, JP, Poirot, JL, Morin, O, et al. Environmental fungal surveillance for the prevention of invasive aspergillosis. Presse Med 2002; 31:841848.Google Scholar
9. Nesa, D, Lortholary, J, Bouakline, A, et al. Comparative performance of impactor air samplers for quantification of fungal contamination. J Hosp Infect 2001;47:149155.Google Scholar
10. International Organization for Standardization (ISO). Cleanrooms and associated controlled environments: biocontamination control. Part 1: general principles and methods. Document ISO 14698-1:2003. ISO: September 2003. Available at: http://www.iso.org. Accessed October 18,2006.Google Scholar
11. Andersen, AA. New samplers for the collection, sizing and enumeration of viable airborne particles. J Bacteriol 1958; 76:471484.Google Scholar
12. Muilenberg, MS. Sampling devices. Immunol Allergy Clin North Am 2003; 23:337355.Google Scholar
13. Stewart, SL, Grinshpun, SA, Willeke, K, Terzieva, S, Ulevicius, V, Donnelly, J. Effect of impact stress on microbial recovery on an agar surface. Appl Environ Microbiol 1995; 61:12321239.CrossRefGoogle Scholar
14. Reponen, TA, Gazenko, SV, Grinshpun, SA, Willeke, K, Cole, EC. Characteristics of airborne actinomycete spores. Appl Environ Microbiol 1998; 64:38073812.Google Scholar
15. Cox, CS. Quantitative and qualitative analysis of airborne spora. Grana 1991; 30:407408.CrossRefGoogle Scholar
16. Groschel, DH. Air sampling in hospitals. Ann N Y Acad Sci 1980; 353:230240.Google Scholar
17. Tavora, LGF, Gambale, W, Heins-Vaccari, EM, et al. Comparative performance of two air samplers for monitoring airborne fungal propagules. Braz J Med Biol Res 2003; 36:613616.Google Scholar
18. Mehta, SK, Bell-Robinson, DM, Groves, TO, Stetzenbach, LD, Pierson, DL. Evaluation of portable air samplers for monitoring airborne culturable bacteria. AIHAJ 2000; 61:850854.Google Scholar
19. Shintany, H, Taniai, E, Miki, A, Kurosu, S, Hayashi, F. Comparison of the collecting efficiency of microbiological air samplers. J Hosp Infect 2004; 56:4248.CrossRefGoogle Scholar
20. Prigione, V, Lingua, G, Marchiosio, VF. Development and use of flow cytometry for detection of airborne fungi. Appl Environ Microbiol 2004; 70:13601365.CrossRefGoogle ScholarPubMed
21. Williams, RH, Ward, E, McCartney, HA. Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl Environ Microbiol 2001; 67:24532459.Google Scholar