Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-12T12:55:29.218Z Has data issue: false hasContentIssue false

Ultraviolet, Visible, and Infrared Spectroscopy of Interstellar Molecules

Published online by Cambridge University Press:  14 August 2015

John H. Black*
Affiliation:
Steward Observatory, University of Arizona, Tucson, AZ 85721 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Absorption line spectroscopy in the ultraviolet, visible, and infrared regions can provide important probes of interstellar chemistry. Significant recent developments include the application of optical absorption line techniques to the study of thick molecular clouds and the improvements in infrared detectors that will eventually lead to effective interstellar spectroscopy in the infrared. Demands for basic molecular data will grow in scope and in level of precision.

Type
Joint Discussions
Copyright
Copyright © Kluwer 1989

References

Abgrall, H., Launay, F., Roueff, E., and Roncin, J.-Y. 1987, J. Chem. Phya., 87, 2036.Google Scholar
Bauer, W., Becker, K. H., Hubrich, C., Meuser, R., and Wildt, J. 1985, Ap. J., 296, 758.Google Scholar
Bauer, W., Becker, K. H., Bielefeld, M., and Meuser, R. 1986, Chem. Phya. Lett., 123, S3.Google Scholar
Bauschlicher, C. W., Langhoff, S. R., and Taylor, P. R. 1988, Ap. J., 332, 531 Google Scholar
Bernatk, P. F. 1987, J.Chem. Phya., 86, 4838.Google Scholar
Black, J. H. 1985, in Molecular Astrophysics: State of the Art and Future Directions, Diercksen, G. W. F., Huebner, W. F., and Langhoff, P. W., editors, (Dordrecht: Reidel), p. 215.Google Scholar
Black, J. H. 1988, Adv. Atom. Mol. Phya., 25, in press.Google Scholar
Black, J. H., and van Dishoeck, E. F. 1988a, Ap. J., 331, 986.Google Scholar
Black, J. H., and van Dishoeck, E. F. 1988b, to appear in Dissociative Recombination, Mitchell, J. B. A. and Guberman, S., editors, (Singapore: World Scientific), in press.Google Scholar
Black, J. H., and Willner, S. P. 1984, Ap. J., 279, 673.Google Scholar
Brazier, C. R., and Brown, J. M. 1984, Canadian J. Phya., 62, 1563.Google Scholar
Brazier, C. R., O’Brien, L. C., and Bernath, P. F. 1987, J. Chem. Phya., 86, 3078.Google Scholar
Cartwright, D. C., and Hay, P. J. 1982, Ap. J., 257, 383.Google Scholar
Chabalowski, C. F., Peyerimhoff, S. D., and Buenker, R. J. 1983, Chem. Phya., 81, 57.Google Scholar
Chang, K. W., and Graham, W. R. M. 1982, J. Chem. Phya., 77, 4300.Google Scholar
Clegg, R. E. S., and Lambert, D. L. 1982, M. N. R. A. S., 201, 723.Google Scholar
Cox, P., Gusten, R., and Henkel, C. 1988, Astr. Ap., in press.Google Scholar
Cowan, R. D., Hobbs, L. M., and York, D. G. 1982, Ap. J., 257, 373; 265, 582.Google Scholar
Crane, P., Hegyi, D. J., Mandolesi, N., and Danks, A. C. 1986, Ap. J., 309, 822.Google Scholar
Crofton, M. W., Jagod, M.-F., Rehfuss, B. D., and Oka, T. 1987, J. Chem. Phya., 86, 3755.Google Scholar
Curl, R. F., Carrick, P. G., and Merer, A. J. 1985 J. Chem. Phya., 82, 3479.Google Scholar
Curtis, L. J., and Erman, P. 1977, J. Opt. Soc. Am., 67, 1218.Google Scholar
Davis, S. P., Smith, W. H., Brault, J. W., Pecyner, R., and Wagner, J. 1984, Ap. J., 287, 455.Google Scholar
Davis, S. P., Shortenhaus, D., Stark, G., Engleman, R., Phillips, J. G., and Hubbard, R. P. 1986, Ap. J., 303, 892.Google Scholar
d’Hendecourt, L. B., and Allamandola, L. J. 1986, Astr. Ap. Suppl., 64, 453.Google Scholar
Douay, M., Nietmann, R., and Bernath, P. F. 1988, J. Mol. Spectroac, in press.Google Scholar
Eidelsberg, M., Launay, F., Rostas, F., Le Floch, A., Breton, J., and Thieblemont, B. 1984, Ann. Isr. Phya. Soe. (Israel), 6, 240.Google Scholar
Engleman, R. 1974, J. Mol. Spectroac., 49, 106.Google Scholar
Erman, P., Lambert, D. L., Larsson, M., and Mannfors, B. 1982, Ap. J., 253, 983.Google Scholar
Federman, S. R. 1987, in IAU Symposium 120, Astrochemistry, eds. Vardya, M.S. and Tarafdar, S.P. (Reidel, Dordrecht), p. 123.Google Scholar
Ford, A. L. 1975, J. Mol. Spectroac., 56, 251.Google Scholar
Forney, D., Althaus, H., and Maier, J. P. 1987, J. Phya. Chem., 91, 6458.Google Scholar
Geballe, T. R. 1986, Astr. Ap., 162, 248.Google Scholar
Geballe, T. R., Baas, F., Greenberg, J. M., and Schutte, W. 1985, Astr. Ap., 146, L6.Google Scholar
Geballe, T. R., and Wade, R. 1985, Ap. J. (Letters), 291, L55.Google Scholar
Hagen, W., Allamandola, L. J., and Greenberg, J. M. 1980, Astr. Ap., 86, L3.Google Scholar
Hall, D. N. B., Kleinmann, S. G., Ridgway, S. T., and Gillett, F. C. 1978, Ap. J. (Letters), 223, L47.Google Scholar
Hartquist, T. W., and Dalgarno, A., 1980, in Giant Molecular Clouds in tie Galaxy, Solomon, P. M. and Edmunds, M. G., editors, (Oxford: Pergamon), p. 315.Google Scholar
Heath, J. R., Curl, R. F., and Smalley, R. E. 1987, J. Chem. Phya., 87, 4236.Google Scholar
Hinkle, K. H., Keady, J. J., and Bernath, P. F. 1988, Science, 241, 1319.Google Scholar
Hobbs, L. M., York, D. G., and Oegerle, W. 1982, Ap. J. (Letters), 252, L21.CrossRefGoogle Scholar
Jensen, P., and Kraemer, W. P. 1988, J. Mol. Spectroac., 129, 216.Google Scholar
Josafatsson, K., and Snow, T. P. 1987, Ap. J., 319, 436.Google Scholar
Klots, R. 1987, private communication.Google Scholar
Knacke, R. F., Geballe, T. R., Noll, K. S., and Tokunaga, A. T. 1985, Ap. J. (Letters), 298, L67.Google Scholar
Kraemer, W. P., Bunker, P. R., and Yoshimine, M. 1984, J. Mol. Spectroac., 107, 191.Google Scholar
Lacy, J. H., Baas, F., Allamandola, L. J., Persson, S. E., McGregor, P. J., Lonsdale, C. J., Geballe, T. R., and van de Bult, C. E. P. 1984, Ap. J., 276, 538.Google Scholar
Larson, H. P., Davis, D. S., Black, J. H., and Fink, U. 1985, Ap. J., 299, 873.Google Scholar
Larsson, M., Siegbahn, P. E. M., and Agren, H. 1983, Ap. J., 272, 369.Google Scholar
Lennon, D. J., Dufton, P. L., Hibbert, A., and Kingston, A. E. 1985, Ap. J., 294, 200.Google Scholar
Lepp, S., and Dalgarno, A. 1988 Ap. J., 324, 553.Google Scholar
Letzelter, C., Edielsberg, M., Rostas, F., Breton, J., and Thieblemont, B. 1987, Chem. Phya., 114, 278.Google Scholar
Lutz, B. L. 1987, Ap. J. (Letters), 315, L147.Google Scholar
Mamon, G. A., Glassgold, A. E., and Huggins, P. J. 1988, Ap. J., 328, 797.Google Scholar
Matsumura, K., Kanamori, H., Kawaguchi, K., and Hirota, E. 1988, J. Chem. Phya., 89, 3491.Google Scholar
Meyer, D. M., and Hawkins, I. 1987, Bull. Am. Aatr. Soc, 19, 1054.Google Scholar
Meyer, D. M., and Jura, M. 1985, Ap. J., 297, 119.Google Scholar
Miller, S., and Tennyson, J. 1988, Ap. J., in press.Google Scholar
Möhlmann, G. R., Bhutani, K. K., de Heer, F. J., and Tsurubuchi, S. 1978, Chem. Phya., 31, 273.Google Scholar
Morton, D. C. 1978, M. N. R. A. S., 184, 713.Google Scholar
Nussbaumer, H., and Storey, P. J. 1981, Astr. Ap., 96, 91.Google Scholar
Oka, T. 1981, Phil. Trans. R. Soc. London A, 303, 543.Google Scholar
O’Keefe, A., Derai, R., and Bowers, M. T. 1984 Chem. Phya., 91, 161.Google Scholar
Omont, A. 1986, Astr. Ap., 164, 159.Google Scholar
ONeil, S. V., Rosmus, P., and Werner, H.-J. 1987, J. Chem. Phya., 87, 2847.Google Scholar
Oppenheimer, M., and Dalgarno, A. 1977, Ap. J., 212, 683.Google Scholar
Pouilly, B., Robbe, J. M., Schamps, J., and Roueff, E. 1988, J. Phya. B, 16, 437.Google Scholar
Reimers, J. R., Wilson, K. R., Heller, E. J., and Langhoff, S. R. 1985, J. Chem. Phya., 82, 5064.Google Scholar
Reutt, J. E., Wang, L. S., Pollard, J. E., Trevor, D. J., Lee, Y. T., and Shirley, D. A. 1986, J. Chem. Phya., 84, 3022.Google Scholar
Römelt, J., Peyerimhoff, S. D., and Buenker, R. J. 1978, Chem. Phya. Lett., 58, 1.Google Scholar
Rosmus, P., Werner, H.-J., Reinsch, E.-A., and Larsson, M. 1986, J. Elec. Spectrosc. Related Phen., 41, 289.CrossRefGoogle Scholar
Rösslein, M., Wyttenbach, M., and Maier, J. P. 1987, J. Chem. Phya., 87, 6770.Google Scholar
Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., and Valero, G. J. 1988, Ap. J., 329, 498.Google Scholar
Scoville, N. Z., Kleinmann, S.G. Hall, D. N. B., and Ridgway, S. T. 1988, Ap. J., 276, 201.Google Scholar
Shinn, J. L. 1982, in “Thermopiysics of Atmospheric Entry”, Horton, T. E., editor, Prog. Astronaut. Aeronaut., 82, 68.Google Scholar
Smith, P. L. 1987, in IAU Symposium 120, Aatrochemiatry, eds. Vardya, M.S. and Tarafdar, S.P. (Reidel, Dordrecht), p. 95.Google Scholar
Sneden, C., and Lambert, D. L. 1982, Ap. J., 259, 381.Google Scholar
Snow, T. P. 1980, in IAU Symposium 87, Interstellar Molecules, ed. Andrew, B.H. (Reidel, Dordrecht), p. 247.Google Scholar
Snow, T. P., Seab, C. G., and Joseph, C. L. 1988, Ap. J., submitted.Google Scholar
Stark, G., Smith, P. L., Yoshino, K., and Parkinson, W. H. 1987, private communication, and in preparation.Google Scholar
Stencel, R. E., Linsky, J. L., Brown, A., Jordan, C., Carpenter, K. G., Wing, R. F., and Czyzak, S. 1981, M. N. R. A. S., 196, 4P.Google Scholar
Swings, P., and Rosenfeld, L. 1937, Ap. J., 86, 488.Google Scholar
Taherian, M. R., and Slanger, T. G. 1984, J. Chem. Phya., 81, 3814.Google Scholar
van Dishoeck, E. F. 1988, Chem. Phya., 77, 277.Google Scholar
van Dishoeck, E. F., and Black, J. H. 1986, Ap. J. Suppl, 62, 109.Google Scholar
van Dishoeck, E. F., and Black, J. H. 1987, in Physical Processes in Interstellar Clouds, eds. Morfill, G. and Scholer, M.S. (Reidel, Dordrecht), p. 241.Google Scholar
van Dishoeck, E. F., and Black, J. H. 1988a, in Rate Coefficients in Aatrochemiatry, Millar, T. J. and Williams, D. A., editors, (Dordrecht: Kluwer), p. 209.Google Scholar
van Dishoeck, E. F., and Black, J. H. 1988b, Ap. J., 334, in press.Google Scholar
van Dishoeck, E. F., and Black, J. H. 1989, Ap. J., 340, in press.Google Scholar
Viala, Y. P., Letzelter, C., Eidelsberg, M., and Rostas, M. 1988, Aatr. Ap., 193, 265.Google Scholar
Whittet, D. C. B., Longmore, A. J., and McFadzean, A. D. 1985, M. N. R. A. S., 216, 45P.Google Scholar
Williams, D. A. 1985, Quart. J. R. Aatr. Soc, 26, 463.Google Scholar
Yoshino, K., Stark, G., Smith, P. L., Parkinson, W. H., and Ito, K. 1988, J. de Phya., in press.Google Scholar