Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T01:41:53.779Z Has data issue: false hasContentIssue false

Rotation of the Solar System Bodies

Published online by Cambridge University Press:  30 March 2016

B. Kolaczek*
Affiliation:
Space Research Centre, Warsaw, Poland

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Solar System bodies are different. They have different sizes, from large planets to small asteroids, and shapes. They have different structure, from solid body to solid body with fluid atmosphere or core, to gaseous bodies, but all of them rotate. The Solar System is a big laboratory for studying rotation of solid and fluid bodies.

Different observational methods are applied to determine the rotation of the Solar system bodies. They depend on the position of the observer and on the structure of the bodies. The most accurate methods, laser ranging to the Moon and artificial satellites and Very Long Base radio Interferometry have been applied to the determination of the rotation of the Earth and the Moon. Their accuracy is better than 0.001”, which on the surface of the Earth corresponds to about 3 cm. Radiotracking of artifical satellites have been used for Earth, Moon, Venus, Mars. In the case of Jupiter, Saturn, Uranus, Neptune and Pluto-Charon magnetic and photometric observations have been used respectively. Their accuracy is of the order of one tenth of a degree.

Type
Joint Commission Meetings
Copyright
Copyright © Kluwer 1992

References

References

Dr M.E. Davies gave a talk on the rotation of Venus at the Joint Commission Meeting. Unfortunately, due to unexpected circumstances, he was not able to contribute to the proceedings of the meeting. The reader can refer to Peale (1989) for a survey of dynamics in the solar system, including Venus, and to Lago and Cazenave (1979) and Shen and Zhang (1988) for the dynamics of Venus’s rotation.

Boigey, F., 1972: Une théorie des perturbations en variables angles-actions.Application au mouvement d’un solide autour d’un point fixe. Précession-nutation, Journal de Mécanique 11, 521543.Google Scholar
Bois, E., 1986: First-Order Theory of Satellite Attitude Motion – Application to HIPPARCOS, Celest. Mech. 39, 309327.CrossRefGoogle Scholar
Bois, E., 1988: Second-Order Theory of the Rotation of an Artificial Satellite, Celest. Mech.42, 141168.Google Scholar
Bois, E., 1992: On the Rotation Theory of Solid Celestial Bodies, submitted to Astron. Astrophys.Google Scholar
Bois, E., Oberti, P., Frœschlé, C., 1992: Gravitational Model of Comet Nucleus Rotation, submitted to Celest. Mech.Google Scholar
Bois, E., Wytrzyszczak, I., 1990: The Moon’s Physical Librations – Part II: Non-Rigid Moon and Direct Non-Gravitational Perturbations, Proceedings of the NATO Advanced Study Institute on: Predictability, Stability and Chaos in N-Body Dynamical Systems, held in Cortina d’Ampezzo, Italy, Aug. 1990, Edited by Roy, Archie E..Google Scholar
Bois, E., Wytrzyszczak, I., Journet, A., 1991: Planetary and Figure-figure Effects on the Moon’s Rotational Motion, submitted to Celest. Mech.Google Scholar
Eckhardt, D.H., 1981: Theory of the libration of the moon, The Moon and the Planets 25, 349.CrossRefGoogle Scholar
Goldstein, H., 1964: Mécanique classique, Presses Universitaires de France, p. 172.Google Scholar
Gupta, S.C. and Narchal, M.L., 1972: A note on Euler’s angles, Amer. J. Physics, 40, 345346.CrossRefGoogle Scholar
Moritz, H., 1980: Theories of Nutation and Polar Motion I, Report No.309, Dept. of Geodetic Science and Surveying, The Ohio State University, p. 109.Google Scholar
Balmino, G., Moynot, B, and Vales, N. 1982: Gravity Field Model of Mars in Spherical Harmonics. J. Geophys. Res. 87, 97359746 CrossRefGoogle Scholar
Bills, B.G., and Ferrari, A.J. 1978: Mars Topography Harmonics and Geophysical Implications. J. Geophys. Res. 83, 34973508 CrossRefGoogle Scholar
Bill, B.G. 1989: The Moments of Inertia of Mars. Geophys. Res. Letters, 16, 385388.CrossRefGoogle Scholar
Binder, B.G., and Davis, D.R. 1973: Phys. Earth Planet. Inter., 7, 477.CrossRefGoogle Scholar
Borderies, N., Balmino, G., Caster, L., and Moynot, B. 1980: Study of Mars Dynamics from Lander Tracking Data Analysis. The Moon and the Planets, 22, 191200.CrossRefGoogle Scholar
Borderies, N. 1980: La Rotation de Mars: Théorie analytique. Analyse d’observations de l’expérience Viking. Ph. D. Dissertation, Université Paul Sabatier, Toulouse, France.Google Scholar
Bretagnon, P. 1974: Termes à longues périodes dans le système solaire. Astron. Astrophys., 30, 141154.Google Scholar
Brouwer, D., and Van Woerkom, A.J.J. 1950: The Secular Variations of the Orbital Elements of the Principal Planets. Astron. Pap. Amer. Ephemeris Naut. Aim, 13, 81107.Google Scholar
Cazenave, A., and Balmino, G. 1981: Meteorological Effects of the Seasonal Variations of the Rotation of Mars. Geophys. Res. Letters, 8, 245248 CrossRefGoogle Scholar
Christensen, E.J. 1975: Martian Topography Derived from Occultation, Radar, Spectral, and Optical Measurements. J. Geophys. Res., 80, 29092913 CrossRefGoogle Scholar
Christensen, E.J., and Balmino, G. 1979: Development and Analysis of a Twelfth Degree and Order Gravity Model for Mars. J. Geophys. Res., 84, 79347953.Google Scholar
Colombo, G. 1976: On the Spin Rate and Latitude Variations of Mars. JPL Interoffice Memorandum, 391, 3914.Google Scholar
Davies, M.E. 1977: The Prime Meridian of Mars and the Longitudes of the Viking Landers. Sciences, 197, 1277.CrossRefGoogle Scholar
Davies, M.E. (1978). The Control Net of Mars: May 1977. J. Geophys. Res. 83, 23112312.CrossRefGoogle Scholar
Davies, M.E., Katayama, F.Y.and Roth, J.A. 1978: Control Net of Mars: February 1978: The Rand Corporation, R-2309-NASA.Google Scholar
Davies, M.E., and Katayama, F.Y. 1983: The 1982 Control Network of Mars, J. Geophys. Res., 88, 75037504.CrossRefGoogle Scholar
Hess, S.L., Henry, R.M., Leovy, C.B., Ryan, J.A., Tillman, J.E., Chamberlain, T.E., Cole, H.L., Dutton, R.G., Greene, G.C., Simon, W.E., and Mitchell, J.L. 1976: Mars Climatology from Viking 1 After 20 Sols, Science, 194, 7881.CrossRefGoogle ScholarPubMed
Hilton, J.L. 1991: The Motion of Mars' Pole: I. Rigid Body Precession and Nutation. II. The Effect of an Elastic Mantle and a Liquid Core. Ph. D. Dissertation, U.S. Naval Observatory, Washington..Google Scholar
Hubbard, W.B; 1984: Planetary Interiors, Van Nostrand Reinhold Company.Google Scholar
Kaula, W.M., Sleep, N.H. and Phillips, R.J. 1989: More About the Moment of Inertia of Mars. Geophys. Res. Letters 16, 13331336 CrossRefGoogle Scholar
Laskar, J. 1988: Secular Evolution of the Solar System over 10 Millions Years. Astron. Astrophys., 198, 198341.Google Scholar
Lyttleton, R.A., Cain, D.L. and Liu, A.S. 1979: Nutations of Mars. JPL Publication, 7985.Google Scholar
Lorell, J., Born, G.H., Christensen, E.J., Jordan, J.F., Laing, P.A., Martin, W.L., Sjogren, W.L., Shapiro, I.I., Reasenberg, R.D., and Slater, G.L. 1972: Mariner 9 Celestial Mechanics Experiment: Gravity Field and Pole Direction of Mars. Science, 175, 175317.CrossRefGoogle ScholarPubMed
Mayo, A.P., Blackshear, W.T., Tolson, R.H., Michael, W.H. Jr., Kelly, G.M., Brencke, J.P., and Komarek, T.A. (1977: Lander Locations, Mars Physical Ephemeris, and Solar System Parameters: Determination From Viking Lander Tracking Data, J. Geophys. Res., 82, 42974303.CrossRefGoogle Scholar
Michael, W.H. Jr., Tolson, R.H., Mayo, A.P., Blackshear, W.T., Kelly, G.M., Cain, D.L., Brenckle, J.P., Shapiro, I.I., and Reasenberg, R.D. 1976: Viking Lander Location and Spin Axis of Mars: Determination from Radio Tracking Data, Science, 193, 803.CrossRefGoogle ScholarPubMed
Michael, W.H. Jr., Mayo, A.P., Blackshear, W.T., Tolson, H.R., Kelly, G.M., Brenkle, J.P., Cain, D.L., Fjeldbo, G., Sweetnam, D.N., Goldstein, R.B., MacNeil, P.E., Reasenberg, R.D., Shapiro, I.I., Boak III, T.I.S., Grossim, M.D. and Tang, C.H. 1976: Mars Dynamics, Atmospheric and Surface Properties: Determination from Viking Tracking Data, Science, 194, 13371339.CrossRefGoogle Scholar
Michael, W.H. Jr. 1979: Viking Lander Tracking Contributions to Mars Mapping. The Moon and the Planets, 20, 149152.CrossRefGoogle Scholar
Michaux, D.M. 1967: Handbook of the Physical Properties of the Planet Mars. NASA Spec. Publ., 3030, 31.Google Scholar
Null, G.W. 1969: A Solution for the Mass and Dynamical Oblateness of Mars. Bulletin of the American Astronomical Society, 1, 356.Google Scholar
Okal, E.A., and Anderson, D.L. (1978). Theoretical Models for Mars and their Seismic Properties, Icarus, 33, 33514.CrossRefGoogle Scholar
Philip, J.R. 1979: Angular Momentum of Seasonally Condensing Atmospheres, with Special Reference to Mars, Geophys. Res. Letters, 6, 727730.CrossRefGoogle Scholar
Pollack, J.B. 1981: Atmospheres of the Terrestrial Planets. The New Solar System, Sky Publishing Corporation and Cambridge University Press.Google Scholar
Reasenberg, R.D. 1977: The Moment of Inertia and Isostasy of Mars, J. Geophys. Res., 82, 369375.CrossRefGoogle Scholar
Reasenberg, R.D., and King, R.W. 1979: The Rotation of Mars.J. Geophys. Res., 84, 62316240.CrossRefGoogle Scholar
Rubincam, D.P. 1990: Mars: Change in Axial Tilt Due to Climate? Science, 248, 720721.CrossRefGoogle ScholarPubMed
Sinclair, A.T. 1972: The Motions of the Satellites of Mars. Mon. Not. Roy. Astron. Soc, 15, 15249.Google Scholar
Struve, H. 1898: Mem. Acad. Imp. Sci. St Petersbourg, ser. VIII 3, 66.Google Scholar
De Vaucouleurs, G. 1964: The Physical Ephemeris of Mars, Icarus, 3, 236247.CrossRefGoogle Scholar
Ward, W.R. 1973: Large Scale Variations in the Obliquity of Mars, Science, 181, 260262.CrossRefGoogle ScholarPubMed
Ward, W.R. 1974a: Climatic Variations on Mars. 1. Astronomical Theory of Insolation, J. Geophys. Res., 79, 33753386.CrossRefGoogle Scholar
Ward, W.R. 1974b: Climatic Variations on Mars. 2. Evolution of Carbon Dioxide Atmosphere and Polar Caps. J. Geophys. Res., 79, 33873395.CrossRefGoogle Scholar
Ward, W.R. 1979a: Present Obliquity Oscillations of Mars: Fourth-Order Accuracy in Orbital e and I, J. Geophys. Res., 84, 237241.CrossRefGoogle Scholar
Ward, W.R. 1979b: Past Obliquity Oscillations of Mars: The Role of the Tharsis Uplift. J. Geophys. Res., 184, 243259.CrossRefGoogle Scholar
Ward, W.R. 1991: Resonant Obliquity of Mars? Icarus, accepted for publication.CrossRefGoogle Scholar
Williams, J.G. 1977: Seasonal Variations in the Rotation of Mars. JPL Engineering Memorandum, 31514.Google Scholar
Benedict, E., and Wilson, C.A., 1990: Dynamic redistribution of oceanic mass and the excitation of polar motion, Trans. Amer. Geophys. U., 71, 481.Google Scholar
Brosche, P., Seiler, U., Sündermann, J., and Wünsch, J., 1989: Periodic changes in Earth’s rotation due to oceanic tides. Astron. Astrophys. 220, 318.Google Scholar
Brosche, P. and Sündermann, J., (eds) 1990: Earth’s rotation from eons to days. Springer-Ferlag.CrossRefGoogle Scholar
Capitaine, N. and Cazé, B., 1991: Deficiencies in the model for the celestial motion of the CEP, Proc. IAU Coll. 127, Hughes, J.A., Smith, C.A. and Kaplan, G.A. (eds).U.S. Naval Observatory, p. 222.Google Scholar
Cazenave, A., (ed.), 1986: Earth rotation, solved and unsolved problems. Reidel.CrossRefGoogle Scholar
Dehant, V., 1990: On the nutations of a more realistic earth model. Geophys. J. Int. 100, 477.CrossRefGoogle Scholar
Djurovic, D., and Paquet, P., 1989: A 120-day oscillation in the solar activity and geophysical phenomena. Astron. Astrophys. 218, 302.Google Scholar
Eubanks, T.M., Steppe, J.A., Dickey, J.O., and Callahan, P.S., 1985: A spectral analysis of the Earth’s angular momentum budget. J. Geophys. Res. 90, 5385.CrossRefGoogle Scholar
Guinot, B., 1982: The Chandlerian nutation from 1900 to 1980. Geophys. J. Roy. Astr. Soc. 71, 295.CrossRefGoogle Scholar
Hefty, J. and Capitaine, N., 1990: The fortnightly and monthly zonal tides in the Earth’s rotation from 1962 to 1988. Geophys. J. Int., 103, 219.CrossRefGoogle Scholar
Herring, T., 1991: The ZMOA-1990 nutation series. Proc. IAU Coll. 127, Hughes, J.A., Smith, C.A., and Kaplan, G.A. (eds), U.S. Naval Observatory, p. 157.Google Scholar
Hide, R., and Dickey, J.O., 1991: Earth’s variable rotation. Science, 53, 627.Google Scholar
Kinoshita, H., and Souchay, J., 1990: The theory of the nutation for the rigid Earth model at the second order. Celest. Mech. 48, 187.CrossRefGoogle Scholar
Kuehne, J., and Wilson, C.R., 1991: Terrestrial water storage and polar motion. J. Geophys. Res., 96, 4337.CrossRefGoogle Scholar
Lambeck, K., 1980: The Earth’s variable rotation. Geophysical causes and consequences. Cambridge University Press.CrossRefGoogle Scholar
Le Mouël, J.L, Courtillot, V., and Jault, D., 1991: Successful prediction of changes in the Earth’s rotation rate. To appear in Nature.Google Scholar
McCarthy, D.D., and Luzum, , 1991: Observations of luni-solar and free core nutation. Proc. IAU Coll. 127. Hughes, J.A., Smith, C.A., and Kaplan, G.A., (eds), U.S. Naval Observatory,, p. 303.Google Scholar
Merriam, J.B., 1982: A comparison of recent theoretical results on the short-period terms in the length of day. Geophys. J. R. astr. Soc. 69, 837.CrossRefGoogle Scholar
Munk, W.H., and MacDonald, G.I.F., 1960: The rotation of the Earth. Cambridge University Press.Google Scholar
Nam, Y.S., and Dickman, S.R., 1990: Effects of dynamic long-period ocean tides on changes in the Earth’s rotation rate. J. Geophys Res. 95, 6751.CrossRefGoogle Scholar
Newhall, X X, Williams, J.G., and Dickey, J.O., 1990: Tidal acceleration of the Moon, Earth’s rotation from eons to days, Brosche, P. and Sündermann, J.(eds), Springer-Verlag, p. 51.CrossRefGoogle Scholar
Rochester, M.G., 1984: Causes of fluctuations in the rotation of the Earth. Phil. Trans. R. Soc. Lond. A 313, 95.Google Scholar
Smith, M.L., and Dahlen, F.A., 1981: Geophys. J. R. astr. Soc. 64, 223.CrossRefGoogle Scholar
Stephenson, F.R., and Morrison, L.V., 1984:Long-term changes in the rotation of the Earth: 700 B.C. to A.D 1980. Phil. Trans. R. Soc. Lond. A 313, 47.Google Scholar
Smith, M.L., and Dahlen, F.A., 1981: Geophys. J. R. astr. Soc. 64, 223.CrossRefGoogle Scholar
Stephenson, F.R., and Morrison, L.V., 1984:Long-term changes in the rotation of the Earth: 700 B.C. to A.D 1980. Phil. Trans. R. Soc. Lond.A 313, 47.Google Scholar
Vondrak, J. 1990: Atmospheric and groundwater excitation of polar motion in case of variable Chandler frequency. Bull. Astron. Inst. Czechosl. 41, 211.Google Scholar
Wahr, J.M., 1979: The tidal motions of a rotating elliptical, elastic and oceanless Earth. Ph. Thesis, University of Colorado.Google Scholar
Andersson, L.E., 1978: Bull. Amer. Astron. Soc. 10, 586.Google Scholar
Andersson, L.E. and Fix, J.D., 1973: Icarus 20, 279.CrossRefGoogle Scholar
Bonneau, D. and Foy, R., 1980: Astron. Astrophys. 92, L1.Google Scholar
Christy, J.W. and Harrington, R.S., 1978: Astron. J. 83, 1005.CrossRefGoogle Scholar
Hardie, R., 1965: Astron. J. 70, 140.CrossRefGoogle Scholar
Harrington, R.S. and Christy, J.W., 1981: Astron. J. 86, 442.CrossRefGoogle Scholar
Lieske, J.D., 1991: Private Comm.Google Scholar
Tholen, D.J., 1985a: Astron. J. 90, 2353.CrossRefGoogle Scholar
Tholen, D.J., 1985b: Astron. J. 90, 2639.CrossRefGoogle Scholar
Tholen, D.J., Buie, M.W. and Swift, C.E., 1987: Astron. J. 92, 244.CrossRefGoogle Scholar
Tholen, D.J. and Buie, M.W., 1988: Astron. J. 96, 1977.CrossRefGoogle Scholar
Tholen, D.J. and Buie, M.W., 1990: Bull. Amer. Astron. Soc. 22, 1129.Google Scholar
Walker, M.F. and Hardie, R., Tholen, 1955: Publ. Astron. Soc. Pac. 67, 224.CrossRefGoogle Scholar
Carr, T.D., and Wang, L. 1990: Monitoring Jupiter’s Hectometric Emission, from Low Frequency Astrophysics in Space. Ed. Kassim, and Weiler, , Lecture Notes in Physics 362.Google Scholar
Desch, M. D. and Kaiser, M. L. 1981: Voyager Measurements of the Rotation Period of Saturn’s Magnetic Field, Geophys. Res. Let., 8, 253256 CrossRefGoogle Scholar
Desch, M. D., Connerney, J. E. P., Kaiser, , and , M. L. 1986: The Rotation Period of Uranus, Nature, 322, 4243.CrossRefGoogle Scholar
Lechacheux, A., Zarka, Ph., Desch, M. D., and Evans, D. R. 1990: The Sidereal Rotation Period of Neptune, Magnetospheres of the Outer Planets, Annapolis, Maryland, August 20-24.Google Scholar
MacDonald, G. J. F., 1964: Tidal Friction, Revs. Geophys., 2, 467541.CrossRefGoogle Scholar
May, J., Carr, T. D., and Desch, M. D., 1979: Decametric Radio Measurements of Jupiter’s Rotation Period, Icarus 40, 8793.CrossRefGoogle Scholar
Riddle, A. C. and Warwick, J. W. 1976: Redefinition of System III Longitude, Icarus 27, 457459.CrossRefGoogle Scholar
Seidelmann, P. K. and Divine, N. 1977: Evaluation of Jupiter Longitudes in System 111(1965), Geophys. Let., 4, 6568.CrossRefGoogle Scholar
Warwick, J. W., Pearce, J. B., Peltzer, R. G., and Riddle, A. C. 1977: Planetary Radio Astronomy Experiment for Voyager Missions, Space Sci. Rev. 21, 309328.CrossRefGoogle Scholar
Lago, B. and Cazenave, A., 1979: Possible dynamical evolution of the rotation of Venus since formation. The Moon and Planets, 21, 127.CrossRefGoogle Scholar
Peale, S.J., 1989: Some unsolved problems in evolutionary dynamics in the solar system. Cel. Mech. and Dynam. Astron., 46, 253.CrossRefGoogle Scholar
Shen, M., and Zhang, C.Z., 1988: Dynamical evolution of the rotation of Venus, Earth, Moon and Planets, 43, 275.CrossRefGoogle Scholar
Antoniadi, E.M., 1934: La Planète Mercure et la Rotation des Satellites. Paris.Google Scholar
Moore, P., In Vilas, F., Chapman, C.R., and Mattews, M.S., 1988: Mercury, Tucson, p. 35.Google Scholar
Peale, S.J., 1988: In Vilas, F., Chapman, C.R., and Mattews, M.S. (1988) Mercury, Tucson, p.461.Google Scholar
Binzel, R.P., Farinella, P., Zappala, V. and Cellino, A. 1989: Asteroid rotation rates: Distributions and statistics. Asteroids II (Binzel, R.P., Gehrels, T. and Matthews, M.S., eds.), Tucson: U. Arizona Press, pp. 416441.Google Scholar
Ephemerides of Minor Planets (published annually) St. Petersburg: Institute of Theoretical Astronomy.Google Scholar
Harris, A.W., 1979: Asteroid rotation rates II. A theory for the collisional evolution of rotation rates. Icarus 40, 145153.CrossRefGoogle Scholar
Harris, A.W. and Lupishko, D.F. 1989: Photometric lightcurve observations and reduction techniques. Asteroids II(Binzel, R.P., Gehrels, T., and Matthews, M.S., eds.), Tucson: U. Arizona Press, pp. 3953.Google Scholar
Lissauer, J.J. and Kary, D.M. 1991: The origin of the systematic component of planetary rotation I: Planet on a circular orbit. Icarus (in press).CrossRefGoogle Scholar
Safronov, V.S., 1969: Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets. Moscow: Nauka Press (in Russian, English trans: NASA TTF-677, 1972).Google Scholar
Boigey, F., 1972: Une théorie des perturbations en variables angles-actions.Application au mouvement d’un solide autour d’un point fixe. Précession-nutation, Journal de Mécanique 11, 521543.Google Scholar
Bois, E., 1986: First-Order Theory of Satellite Attitude Motion – Application to HIPPARCOS, Celest. Mech. 39, 309327.CrossRefGoogle Scholar
Bois, E., 1988: Second-Order Theory of the Rotation of an Artificial Satellite, Celest. Mech.42, 141168.Google Scholar
Bois, E., 1992: On the Rotation Theory of Solid Celestial Bodies, submitted to Astron. Astrophys.Google Scholar
Bois, E., Oberti, P., Frœschlé, C., 1992: Gravitational Model of Comet Nucleus Rotation, submitted to Celest. Mech.Google Scholar
Bois, E., Wytrzyszczak, I., 1990: The Moon’s Physical Librations – Part II: Non-Rigid Moon and Direct Non-Gravitational Perturbations, Proceedings of the NATO Advanced Study Institute on: Predictability, Stability and Chaos in N-Body Dynamical Systems, held in Cortina d’Ampezzo, Italy, Aug. 1990, Edited by Roy, Archie E..Google Scholar
Bois, E., Wytrzyszczak, I., Journet, A., 1991: Planetary and Figure-figure Effects on the Moon’s Rotational Motion, submitted to Celest. Mech.Google Scholar
Eckhardt, D.H., 1981: Theory of the libration of the moon, The Moon and the Planets 25, 349.CrossRefGoogle Scholar
Goldstein, H., 1964: Mécanique classique, Presses Universitaires de France, p. 172.Google Scholar
Gupta, S.C. and Narchal, M.L., 1972: A note on Euler’s angles, Amer. J. Physics, 40, 345346.CrossRefGoogle Scholar
Moritz, H., 1980: Theories of Nutation and Polar Motion I, Report No.309, Dept. of Geodetic Science and Surveying, The Ohio State University, p. 109.Google Scholar
Balmino, G., Moynot, B, and Vales, N. 1982: Gravity Field Model of Mars in Spherical Harmonics. J. Geophys. Res. 87, 97359746 CrossRefGoogle Scholar
Bills, B.G., and Ferrari, A.J. 1978: Mars Topography Harmonics and Geophysical Implications. J. Geophys. Res. 83, 34973508 CrossRefGoogle Scholar
Bill, B.G. 1989: The Moments of Inertia of Mars. Geophys. Res. Letters, 16, 385388.CrossRefGoogle Scholar
Binder, B.G., and Davis, D.R. 1973: Phys. Earth Planet. Inter., 7, 477.CrossRefGoogle Scholar
Borderies, N., Balmino, G., Caster, L., and Moynot, B. 1980: Study of Mars Dynamics from Lander Tracking Data Analysis. The Moon and the Planets, 22, 191200.CrossRefGoogle Scholar
Borderies, N. 1980: La Rotation de Mars: Théorie analytique. Analyse d’observations de l’expérience Viking. Ph. D. Dissertation, Université Paul Sabatier, Toulouse, France.Google Scholar
Bretagnon, P. 1974: Termes à longues périodes dans le système solaire. Astron. Astrophys., 30, 141154.Google Scholar
Brouwer, D., and Van Woerkom, A.J.J. 1950: The Secular Variations of the Orbital Elements of the Principal Planets. Astron. Pap. Amer. Ephemeris Naut. Aim, 13, 81107.Google Scholar
Cazenave, A., and Balmino, G. 1981: Meteorological Effects of the Seasonal Variations of the Rotation of Mars. Geophys. Res. Letters, 8, 245248 CrossRefGoogle Scholar
Christensen, E.J. 1975: Martian Topography Derived from Occultation, Radar, Spectral, and Optical Measurements. J. Geophys. Res., 80, 29092913 CrossRefGoogle Scholar
Christensen, E.J., and Balmino, G. 1979: Development and Analysis of a Twelfth Degree and Order Gravity Model for Mars. J. Geophys. Res., 84, 79347953.Google Scholar
Colombo, G. 1976: On the Spin Rate and Latitude Variations of Mars. JPL Interoffice Memorandum, 391, 3914.Google Scholar
Davies, M.E. 1977: The Prime Meridian of Mars and the Longitudes of the Viking Landers. Sciences, 197, 1277.CrossRefGoogle Scholar
Davies, M.E. (1978). The Control Net of Mars: May 1977. J. Geophys. Res. 83, 23112312.CrossRefGoogle Scholar
Davies, M.E., Katayama, F.Y.and Roth, J.A. 1978: Control Net of Mars: February 1978: The Rand Corporation, R-2309-NASA.Google Scholar
Davies, M.E., and Katayama, F.Y. 1983: The 1982 Control Network of Mars, J. Geophys. Res., 88, 75037504.CrossRefGoogle Scholar
Hess, S.L., Henry, R.M., Leovy, C.B., Ryan, J.A., Tillman, J.E., Chamberlain, T.E., Cole, H.L., Dutton, R.G., Greene, G.C., Simon, W.E., and Mitchell, J.L. 1976: Mars Climatology from Viking 1 After 20 Sols, Science, 194, 7881.CrossRefGoogle ScholarPubMed
Hilton, J.L. 1991: The Motion of Mars' Pole: I. Rigid Body Precession and Nutation. II. The Effect of an Elastic Mantle and a Liquid Core. Ph. D. Dissertation, U.S. Naval Observatory, Washington..Google Scholar
Hubbard, W.B; 1984: Planetary Interiors, Van Nostrand Reinhold Company.Google Scholar
Kaula, W.M., Sleep, N.H. and Phillips, R.J. 1989: More About the Moment of Inertia of Mars. Geophys. Res. Letters 16, 13331336 CrossRefGoogle Scholar
Laskar, J. 1988: Secular Evolution of the Solar System over 10 Millions Years. Astron. Astrophys., 198, 198341.Google Scholar
Lyttleton, R.A., Cain, D.L. and Liu, A.S. 1979: Nutations of Mars. JPL Publication, 7985.Google Scholar
Lorell, J., Born, G.H., Christensen, E.J., Jordan, J.F., Laing, P.A., Martin, W.L., Sjogren, W.L., Shapiro, I.I., Reasenberg, R.D., and Slater, G.L. 1972: Mariner 9 Celestial Mechanics Experiment: Gravity Field and Pole Direction of Mars. Science, 175, 175317.CrossRefGoogle ScholarPubMed
Mayo, A.P., Blackshear, W.T., Tolson, R.H., Michael, W.H. Jr., Kelly, G.M., Brencke, J.P., and Komarek, T.A. (1977: Lander Locations, Mars Physical Ephemeris, and Solar System Parameters: Determination From Viking Lander Tracking Data, J. Geophys. Res., 82, 42974303.CrossRefGoogle Scholar
Michael, W.H. Jr., Tolson, R.H., Mayo, A.P., Blackshear, W.T., Kelly, G.M., Cain, D.L., Brenckle, J.P., Shapiro, I.I., and Reasenberg, R.D. 1976: Viking Lander Location and Spin Axis of Mars: Determination from Radio Tracking Data, Science, 193, 803.CrossRefGoogle ScholarPubMed
Michael, W.H. Jr., Mayo, A.P., Blackshear, W.T., Tolson, H.R., Kelly, G.M., Brenkle, J.P., Cain, D.L., Fjeldbo, G., Sweetnam, D.N., Goldstein, R.B., MacNeil, P.E., Reasenberg, R.D., Shapiro, I.I., Boak III, T.I.S., Grossim, M.D. and Tang, C.H. 1976: Mars Dynamics, Atmospheric and Surface Properties: Determination from Viking Tracking Data, Science, 194, 13371339.CrossRefGoogle Scholar
Michael, W.H. Jr. 1979: Viking Lander Tracking Contributions to Mars Mapping. The Moon and the Planets, 20, 149152.CrossRefGoogle Scholar
Michaux, D.M. 1967: Handbook of the Physical Properties of the Planet Mars. NASA Spec. Publ., 3030, 31.Google Scholar
Null, G.W. 1969: A Solution for the Mass and Dynamical Oblateness of Mars. Bulletin of the American Astronomical Society, 1, 356.Google Scholar
Okal, E.A., and Anderson, D.L. (1978). Theoretical Models for Mars and their Seismic Properties, Icarus, 33, 33514.CrossRefGoogle Scholar
Philip, J.R. 1979: Angular Momentum of Seasonally Condensing Atmospheres, with Special Reference to Mars, Geophys. Res. Letters, 6, 727730.CrossRefGoogle Scholar
Pollack, J.B. 1981: Atmospheres of the Terrestrial Planets. The New Solar System, Sky Publishing Corporation and Cambridge University Press.Google Scholar
Reasenberg, R.D. 1977: The Moment of Inertia and Isostasy of Mars, J. Geophys. Res., 82, 369375.CrossRefGoogle Scholar
Reasenberg, R.D., and King, R.W. 1979: The Rotation of Mars.J. Geophys. Res., 84, 62316240.CrossRefGoogle Scholar
Rubincam, D.P. 1990: Mars: Change in Axial Tilt Due to Climate? Science, 248, 720721.CrossRefGoogle ScholarPubMed
Sinclair, A.T. 1972: The Motions of the Satellites of Mars. Mon. Not. Roy. Astron. Soc, 15, 15249.Google Scholar
Struve, H. 1898: Mem. Acad. Imp. Sci. St Petersbourg, ser. VIII 3, 66.Google Scholar
De Vaucouleurs, G. 1964: The Physical Ephemeris of Mars, Icarus, 3, 236247.CrossRefGoogle Scholar
Ward, W.R. 1973: Large Scale Variations in the Obliquity of Mars, Science, 181, 260262.CrossRefGoogle ScholarPubMed
Ward, W.R. 1974a: Climatic Variations on Mars. 1. Astronomical Theory of Insolation, J. Geophys. Res., 79, 33753386.CrossRefGoogle Scholar
Ward, W.R. 1974b: Climatic Variations on Mars. 2. Evolution of Carbon Dioxide Atmosphere and Polar Caps. J. Geophys. Res., 79, 33873395.CrossRefGoogle Scholar
Ward, W.R. 1979a: Present Obliquity Oscillations of Mars: Fourth-Order Accuracy in Orbital e and I, J. Geophys. Res., 84, 237241.CrossRefGoogle Scholar
Ward, W.R. 1979b: Past Obliquity Oscillations of Mars: The Role of the Tharsis Uplift. J. Geophys. Res., 184, 243259.CrossRefGoogle Scholar
Ward, W.R. 1991: Resonant Obliquity of Mars? Icarus, accepted for publication.CrossRefGoogle Scholar
Williams, J.G. 1977: Seasonal Variations in the Rotation of Mars. JPL Engineering Memorandum, 31514.Google Scholar
Benedict, E., and Wilson, C.A., 1990: Dynamic redistribution of oceanic mass and the excitation of polar motion, Trans. Amer. Geophys. U., 71, 481.Google Scholar
Brosche, P., Seiler, U., Sündermann, J., and Wünsch, J., 1989: Periodic changes in Earth’s rotation due to oceanic tides. Astron. Astrophys. 220, 318.Google Scholar
Brosche, P. and Sündermann, J., (eds) 1990: Earth’s rotation from eons to days. Springer-Ferlag.CrossRefGoogle Scholar
Capitaine, N. and Cazé, B., 1991: Deficiencies in the model for the celestial motion of the CEP, Proc. IAU Coll. 127, Hughes, J.A., Smith, C.A. and Kaplan, G.A. (eds).U.S. Naval Observatory, p. 222.Google Scholar
Cazenave, A., (ed.), 1986: Earth rotation, solved and unsolved problems. Reidel.CrossRefGoogle Scholar
Dehant, V., 1990: On the nutations of a more realistic earth model. Geophys. J. Int. 100, 477.CrossRefGoogle Scholar
Djurovic, D., and Paquet, P., 1989: A 120-day oscillation in the solar activity and geophysical phenomena. Astron. Astrophys. 218, 302.Google Scholar
Eubanks, T.M., Steppe, J.A., Dickey, J.O., and Callahan, P.S., 1985: A spectral analysis of the Earth’s angular momentum budget. J. Geophys. Res. 90, 5385.CrossRefGoogle Scholar
Guinot, B., 1982: The Chandlerian nutation from 1900 to 1980. Geophys. J. Roy. Astr. Soc. 71, 295.CrossRefGoogle Scholar
Hefty, J. and Capitaine, N., 1990: The fortnightly and monthly zonal tides in the Earth’s rotation from 1962 to 1988. Geophys. J. Int., 103, 219.CrossRefGoogle Scholar
Herring, T., 1991: The ZMOA-1990 nutation series. Proc. IAU Coll. 127, Hughes, J.A., Smith, C.A., and Kaplan, G.A. (eds), U.S. Naval Observatory, p. 157.Google Scholar
Hide, R., and Dickey, J.O., 1991: Earth’s variable rotation. Science, 53, 627.Google Scholar
Kinoshita, H., and Souchay, J., 1990: The theory of the nutation for the rigid Earth model at the second order. Celest. Mech. 48, 187.CrossRefGoogle Scholar
Kuehne, J., and Wilson, C.R., 1991: Terrestrial water storage and polar motion. J. Geophys. Res., 96, 4337.CrossRefGoogle Scholar
Lambeck, K., 1980: The Earth’s variable rotation. Geophysical causes and consequences. Cambridge University Press.CrossRefGoogle Scholar
Le Mouël, J.L, Courtillot, V., and Jault, D., 1991: Successful prediction of changes in the Earth’s rotation rate. To appear in Nature.Google Scholar
McCarthy, D.D., and Luzum, , 1991: Observations of luni-solar and free core nutation. Proc. IAU Coll. 127. Hughes, J.A., Smith, C.A., and Kaplan, G.A., (eds), U.S. Naval Observatory,, p. 303.Google Scholar
Merriam, J.B., 1982: A comparison of recent theoretical results on the short-period terms in the length of day. Geophys. J. R. astr. Soc. 69, 837.CrossRefGoogle Scholar
Munk, W.H., and MacDonald, G.I.F., 1960: The rotation of the Earth. Cambridge University Press.Google Scholar
Nam, Y.S., and Dickman, S.R., 1990: Effects of dynamic long-period ocean tides on changes in the Earth’s rotation rate. J. Geophys Res. 95, 6751.CrossRefGoogle Scholar
Newhall, X X, Williams, J.G., and Dickey, J.O., 1990: Tidal acceleration of the Moon, Earth’s rotation from eons to days, Brosche, P. and Sündermann, J.(eds), Springer-Verlag, p. 51.CrossRefGoogle Scholar
Rochester, M.G., 1984: Causes of fluctuations in the rotation of the Earth. Phil. Trans. R. Soc. Lond. A 313, 95.Google Scholar
Smith, M.L., and Dahlen, F.A., 1981: Geophys. J. R. astr. Soc. 64, 223.CrossRefGoogle Scholar
Stephenson, F.R., and Morrison, L.V., 1984:Long-term changes in the rotation of the Earth: 700 B.C. to A.D 1980. Phil. Trans. R. Soc. Lond. A 313, 47.Google Scholar
Smith, M.L., and Dahlen, F.A., 1981: Geophys. J. R. astr. Soc. 64, 223.CrossRefGoogle Scholar
Stephenson, F.R., and Morrison, L.V., 1984:Long-term changes in the rotation of the Earth: 700 B.C. to A.D 1980. Phil. Trans. R. Soc. Lond.A 313, 47.Google Scholar
Vondrak, J. 1990: Atmospheric and groundwater excitation of polar motion in case of variable Chandler frequency. Bull. Astron. Inst. Czechosl. 41, 211.Google Scholar
Wahr, J.M., 1979: The tidal motions of a rotating elliptical, elastic and oceanless Earth. Ph. Thesis, University of Colorado.Google Scholar
Andersson, L.E., 1978: Bull. Amer. Astron. Soc. 10, 586.Google Scholar
Andersson, L.E. and Fix, J.D., 1973: Icarus 20, 279.CrossRefGoogle Scholar
Bonneau, D. and Foy, R., 1980: Astron. Astrophys. 92, L1.Google Scholar
Christy, J.W. and Harrington, R.S., 1978: Astron. J. 83, 1005.CrossRefGoogle Scholar
Hardie, R., 1965: Astron. J. 70, 140.CrossRefGoogle Scholar
Harrington, R.S. and Christy, J.W., 1981: Astron. J. 86, 442.CrossRefGoogle Scholar
Lieske, J.D., 1991: Private Comm.Google Scholar
Tholen, D.J., 1985a: Astron. J. 90, 2353.CrossRefGoogle Scholar
Tholen, D.J., 1985b: Astron. J. 90, 2639.CrossRefGoogle Scholar
Tholen, D.J., Buie, M.W. and Swift, C.E., 1987: Astron. J. 92, 244.CrossRefGoogle Scholar
Tholen, D.J. and Buie, M.W., 1988: Astron. J. 96, 1977.CrossRefGoogle Scholar
Tholen, D.J. and Buie, M.W., 1990: Bull. Amer. Astron. Soc. 22, 1129.Google Scholar
Walker, M.F. and Hardie, R., Tholen, 1955: Publ. Astron. Soc. Pac. 67, 224.CrossRefGoogle Scholar
Carr, T.D., and Wang, L. 1990: Monitoring Jupiter’s Hectometric Emission, from Low Frequency Astrophysics in Space. Ed. Kassim, and Weiler, , Lecture Notes in Physics 362.Google Scholar
Desch, M. D. and Kaiser, M. L. 1981: Voyager Measurements of the Rotation Period of Saturn’s Magnetic Field, Geophys. Res. Let., 8, 253256 CrossRefGoogle Scholar
Desch, M. D., Connerney, J. E. P., Kaiser, , and , M. L. 1986: The Rotation Period of Uranus, Nature, 322, 4243.CrossRefGoogle Scholar
Lechacheux, A., Zarka, Ph., Desch, M. D., and Evans, D. R. 1990: The Sidereal Rotation Period of Neptune, Magnetospheres of the Outer Planets, Annapolis, Maryland, August 20-24.Google Scholar
MacDonald, G. J. F., 1964: Tidal Friction, Revs. Geophys., 2, 467541.CrossRefGoogle Scholar
May, J., Carr, T. D., and Desch, M. D., 1979: Decametric Radio Measurements of Jupiter’s Rotation Period, Icarus 40, 8793.CrossRefGoogle Scholar
Riddle, A. C. and Warwick, J. W. 1976: Redefinition of System III Longitude, Icarus 27, 457459.CrossRefGoogle Scholar
Seidelmann, P. K. and Divine, N. 1977: Evaluation of Jupiter Longitudes in System 111(1965), Geophys. Let., 4, 6568.CrossRefGoogle Scholar
Warwick, J. W., Pearce, J. B., Peltzer, R. G., and Riddle, A. C. 1977: Planetary Radio Astronomy Experiment for Voyager Missions, Space Sci. Rev. 21, 309328.CrossRefGoogle Scholar
Lago, B. and Cazenave, A., 1979: Possible dynamical evolution of the rotation of Venus since formation. The Moon and Planets, 21, 127.CrossRefGoogle Scholar
Peale, S.J., 1989: Some unsolved problems in evolutionary dynamics in the solar system. Cel. Mech. and Dynam. Astron., 46, 253.CrossRefGoogle Scholar
Shen, M., and Zhang, C.Z., 1988: Dynamical evolution of the rotation of Venus, Earth, Moon and Planets, 43, 275.CrossRefGoogle Scholar
Antoniadi, E.M., 1934: La Planète Mercure et la Rotation des Satellites. Paris.Google Scholar
Moore, P., In Vilas, F., Chapman, C.R., and Mattews, M.S., 1988: Mercury, Tucson, p. 35.Google Scholar
Peale, S.J., 1988: In Vilas, F., Chapman, C.R., and Mattews, M.S. (1988) Mercury, Tucson, p.461.Google Scholar
Binzel, R.P., Farinella, P., Zappala, V. and Cellino, A. 1989: Asteroid rotation rates: Distributions and statistics. Asteroids II (Binzel, R.P., Gehrels, T. and Matthews, M.S., eds.), Tucson: U. Arizona Press, pp. 416441.Google Scholar
Ephemerides of Minor Planets (published annually) St. Petersburg: Institute of Theoretical Astronomy.Google Scholar
Harris, A.W., 1979: Asteroid rotation rates II. A theory for the collisional evolution of rotation rates. Icarus 40, 145153.CrossRefGoogle Scholar
Harris, A.W. and Lupishko, D.F. 1989: Photometric lightcurve observations and reduction techniques. Asteroids II(Binzel, R.P., Gehrels, T., and Matthews, M.S., eds.), Tucson: U. Arizona Press, pp. 3953.Google Scholar
Lissauer, J.J. and Kary, D.M. 1991: The origin of the systematic component of planetary rotation I: Planet on a circular orbit. Icarus (in press).CrossRefGoogle Scholar
Safronov, V.S., 1969: Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets. Moscow: Nauka Press (in Russian, English trans: NASA TTF-677, 1972).Google Scholar