Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T05:20:48.010Z Has data issue: false hasContentIssue false

Recent Results of the Nutation Theory for a Rigid Earth

Published online by Cambridge University Press:  30 March 2016

J. Souchay
Affiliation:
Observatoire de Paris, URA 1125 CNRS, 61, av. de l’observatoire F 750014 Paris, France
H. Kinoshita
Affiliation:
Tokyo National Astronomical Observatory Mitaka-shi T181 Tokyo, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although the main questions remaining in the frame of the study of the nutation-precession phenomena concern principally the effects due to physical interactions, recent works have shown that even in the simplified case of a rigid Earth model of nutation, important changes have to be taken into account. Here we present the various steps having led to a more complete and more accurate rigid Earth nutation theory, since the pionnier work of Woolard (1953), insisting on the most recent improvements.

Type
II. Joint Discussions
Copyright
Copyright © Kluwer 1995

References

Chariot, P., Sovers, O.J., Williams, J.G. and Newhall, X.X. (1991), A global VLBI/LLR analysis for the determination of precession and nutation constants. In: Reference Systems, IAU Coll. No. 127, eds Hugues, J.A., Smith, CA., and Kaplan, G.H., United States Naval Observatory, Washington D.C., pp. 228.Google Scholar
Hartmann, T. and Soffel, M. (1994), The nutation of a rigid Earth model: Direct influences of the planets. Astron. J., in press.Google Scholar
Hartmann, T. and Wenzel, H.G. (1994), The harmonic development of the Earth tide generating potential due to the direct effect of the planets. Geophysical Research Letters, submitted.Google Scholar
Herring, T.A. (1991), in: Reference Systems, Proceedings of the 127th. Colloquium of the International Astronomical Union, eds Hugues, J.A., Smith, C.A. and Kaplan, G.A..Google Scholar
T.A., Herring, Buffet, B.A., Mathews, P.M. and Shapiro, I.I. (1991), J. Geophys. Res., Vol. 96 No. B5, pp. 8259.Google Scholar
Hori, G.I. (1966), Pubi. Astron. Soc. Japan, Vol. 18, pp. 287.Google Scholar
Kinoshita, H. (1977), Celest. Mech., Vol. 15, pp. 277.Google Scholar
Kinoshita, H. and Souchay, J. (1990), Celest. Mech., Vol. 48, pp. 187.Google Scholar
Kubo, Y. (1982), Celest. Mech., Vol. 26, pp. 96.Google Scholar
Kubo, Y. and Fukushima, T. (1988), in: The Earth’s Rotation and Reference Frames for Geodesy and Geodynamics, eds Babcock, A.K. and Wilkins, G.A., pp. 331.Google Scholar
Lieske, J.H., Lederle, T., Fricke, W. and Morando, B. (1977), Astron. Astrophys., Vol. 58, pp. 1.Google Scholar
Mc Carthy, D.D. and Luzum, B. J. (1991), Astron. J., Vol. 102, pp. 1889.CrossRefGoogle Scholar
Miyamoto, M. and Soma, M. (1993), Astron. J., Vol. 105, pp. 691.CrossRefGoogle Scholar
Schastok, J., Soffel, M. and Ruder, H. (1987), Numerical Solution for the Rotation of the Rigid Earth Model, in: Proc. IUGG symp. U4.Google Scholar
Schastok, J., Soffel, M. and Ruder, H. (1989), Celest. Mech. Vol. 47, pp. 219.Google Scholar
Seidelmann, P.K. (1982), Celest. Mech., Vol. 27, pp. 79.CrossRefGoogle Scholar
Souchay, J. (1993), Astron. and Astrophys., 276, pp. 266.Google Scholar
Souchay, J. and Kinoshita, H. (1991), Celest. Mech., Vol. 52, pp. 45.CrossRefGoogle Scholar
Steppe, J.A., Oliveau, S.H. and Sovers, O.J. (1993), Earth orientation, reference frames and atmospheric excitation functions. the 1992 IERS Annual Report, IERS technical Note, Vol. 14, ed Charlot, P., pp. R33.Google Scholar
Vondrak, J. (1983a), Bull. Astr. Inst. Czechosl., Vol. 33, pp. 26.Google Scholar
Vondrak, J. (1983b), Bull. Astr. Inst. Czechosl., Vol. 34, pp. 184 Google Scholar
Vondrak, J. (1983c), Bull. Astr. Inst. Czechosl., Vol. 34, pp. 311.Google Scholar
Wahr, J.M. (1979), Ph.D. Thesis, University of Colorado, Boulder, Colorado.Google Scholar
Williams, J.G. (1994), Contributions to the Earth’s Obliquity Rate, Precession and Nutation, Astron. J., in press.Google Scholar
Woolard, E.W. (1953), Astronomical Papers for the American Ephemeris and Nautical Almanac XV, Pt. 1, U.S. Government Printing Office, Washington.Google Scholar
Zhu, S.Y. and Groten, E. (1989), Astron. J., Vol. 98, pp. 1104.CrossRefGoogle Scholar