Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T06:26:14.082Z Has data issue: false hasContentIssue false

Planetary Rings as a Model in Cosmogony

Published online by Cambridge University Press:  30 March 2016

André Brahic*
Affiliation:
Université Paris VII, Observatoire de Paris, 92190 Meudon, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since the beginning of the XVIIth century, rings of dispersed matter play an important role in theories accounting for the origin of the solar system and proto-planetary nebulae. Planetary rings afford a good opportunity of studying some of the accretion mechanisms which operate during the early evolution of a proto-planetary nebula. Three new planetary rings have been recently discovered. Space and ground-based observations have completely renewed our image of ring systems. Simultaneously, a wealth of theoretical and numerical models have flourished. Collisions between ring’s particles and gravitational perturbations of nearby satellites should explain most of the ring’s structures. However, important questions are still unanswered. We do not understand why the rings are so dissimilar. We do not know the ring’s origin and their stability over billions of years. Most of the ring’s complex structures, the existence of arcs, and color and optical depth variations are not explained. Confinement mechanisms, which are so important in cosmogony, seem to be at work in planetary rings today.

Type
Joint Discussions
Copyright
Copyright © Kluwer 1992

References

REFERENCES

Barge, P., and Pellat, R. 1992. Icarus, in press.Google Scholar
Brahic, A, 1975. A numerical study of a gravitating system of colliding particles: Applications to the dynamics of Saturn’s rings and to the formation of the solar system. Icarus 25, 452.CrossRefGoogle Scholar
Brahic, A. 1977. Systems of Colliding Bodies in a Gravitational Field: I – Numerical Simulation of the Standard Model. Astron. Astrophys. 54, 895.Google Scholar
Brahic, A., and Hénon, M. 1977. Systems of colliding bodies in a gravitational field: II – Effect of transversal viscosity. Astron. Astrophys. 59, 1.Google Scholar
Cameron, A.G.W. 1985. Formation and evolution of the primitive solar nebula. In Protostars and Planets II, eds. Black, D.C. and Matthews, M.S. (Tucson: University of Arizona Press), p. 1073.Google Scholar
Cazenave, A., Lago, B., and Dominh, K. 1982. Three-dimensional numerical model of the latest stage of planet growth. Icarus.CrossRefGoogle Scholar
Chapelain, J. 1660. Letter to Huygens, 4 March 1660. In Oeuvres complètes de Christiaan Huygens, vol. II (The Hague, 1890), p. 34.Google Scholar
Descartes, R. 1644. Principia Philosophia. IN Oeuvres de Descartes, eds Adams, C. and Tannery, P., vol. VIII (Paris, 1905), p. 1348.Google Scholar
Ferrari, C. 1992. Thèse de l’Université Paris XI.Google Scholar
Goldreich, P., and Tremarne, S. 1979. The excitation of density waves at the Lindblad and corotation resonances by an external potential. Astrophys. J. 233, 857.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1980. Disk-satellite interactions. Astrophys. J. 241, 425.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1981. The origin of the eccentricities of the rings of Uranus. Astrophys. J. 243, 1062.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1982. The Dynamics of Planetary Rings. Ann. Rev. Astron. Astrophys. 20, 249.CrossRefGoogle Scholar
Goldreich, P. and Ward, W.R. 1973. The formation of planetesimals. Astrophys. J. 183, 1057.CrossRefGoogle Scholar
Greenberg, R., Wacker, J.F., Hartmann, W.K., and Chapman, C.R. 1978. Planetesimals to planets: Numerical simulation of collisional evolution. Icarus 35, 1.CrossRefGoogle Scholar
Jewitt, D.C., and Danielson, G.E. 1981. The Jovian Ring. J. Geophys. Res. 86, 8691.CrossRefGoogle Scholar
Kant, I. 1755. Allgemeine Naturgeschichte und Theorie des Himmels. Königberg and Leipzig.Google Scholar
Kirkwood, D. 1872. On the formation and primitive structure of the solar system. Proc. Amer. Phil. Soc. 12, 163.Google Scholar
Lambert, J.H. 1761. Cosmologische Briefe über die Einrichtung des Welthaues. Augsburg.Google Scholar
Laplace, P.S. de 1787. Mémoire sur la Théorie de l’Anneau de Saturne. Mémoires de l’Académie Royale des Sciences de Paris. 249.Google Scholar
Lissauer, J. 1985. Shepherding model for Neptune’s arc ring. Nature 318, 544.CrossRefGoogle Scholar
Lynden-Bell, D., and Pringle, J.E. 1974. The evolution of viscous discs and the origin of the nebular variables. Monthly Not. Roy. Astron. Soc. 168, 603.CrossRefGoogle Scholar
Nölke, F. 1932. Month. Not. Roy. Astron. Soc. 93, 159.CrossRefGoogle Scholar
Porco, C.C. 1991. An Explanation for Neptune’s Ring Arcs. Science 253, 995.CrossRefGoogle ScholarPubMed
Prendergast, K.H., and Burbidge, G.R. 1968. Astrophys. J. Let. 151, L 83.CrossRefGoogle Scholar
Rosen, , and Lissauer, 1988. Science 241, 690.CrossRefGoogle Scholar
Safronov, V.S. 1969. Evolution of the protoplanetary cloud and formation of the Earth and the planets. Moscou, Nauka Press.Google Scholar
Showalter, M.R., Burns, J.A., Cuzzi, J.N., and Pollack, J.B. 1987. Jupiter’s ring system: New results on strcuture and particle properties. Icarus 69, 458.CrossRefGoogle Scholar
Shu, F.H. 1984. Waves in Planetary Rings. In Planetary Rings. Greenberg, R. and Brahic, A. eds. (Tucson: University of Arizona Press), p. 513.Google Scholar
Sicardy, B., Roques, F., and Brahic, A. 1991. Neptune’s rings, 1983-1989: Ground-based stellar occultation observations. Icarus 89, 220.CrossRefGoogle Scholar
Spitzer, L. 1939. Astrophys. J. 90, 675.CrossRefGoogle Scholar
Toomre, A. 1964. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217.CrossRefGoogle Scholar
Wetherill, G.W. 1980. Formation of the terrestrial planets. Ann. Rev. Astron. Astrophys. 18, 77.CrossRefGoogle Scholar