Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-13T03:59:53.107Z Has data issue: false hasContentIssue false

Origin and Development of Solar Flares

Published online by Cambridge University Press:  30 March 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A review is given of knowledge on solar flares with particular emphasis on progress made during the international Solar Maximum Year (1979-1981).

The pre-flare structure is described by a flux tube model or a circuit model. The instability leading to a flare may occur by a disturbance of the field topology (mostly: field emergence) followed by field-line reconnection (circuit coupling). In the first, impulsive, phase of a flare this causes jets of energetic electrons, originating near the top of the flux tube, to bombard lower chromospheric regions: footpoint heating. In the second (‘gradual’ or ‘diffuse’) phase heated gas from the footpoints ascends convectively upward producing a large cloud of hot gas. Consequent shock wave phenomena cause moving fronts and associated waves in the high parts of the corona; these show up in coronagraphic or radio-observations. In some cases it happens that several hours after a large flare extended loop-like structures appear of fairly high temperature (> 6 MK), emitting a very faint X-ray flux. They are the basic structures of a more extended configuration, visible on metric radio waves, and pointing out from the area where the flare occurred. They may extend to distances of ≈ 106 km or more from the solar surface.

Type
Invited Discourses
Copyright
Copyright © Reidel 1983

References

Alfvén, H. : 1981, Cosmic Plasma, Reidel, Dordrecht.Google Scholar
Alfvén, H. and Carlqvist, P.: 1967, Solar Phys. 1, 220.Google Scholar
Boelee, A., De Jager, C.: 1983, Solar Physics, in preparation.Google Scholar
Chupp, E.L. : 1982, Solar Energetic Photon Transients, Proceedings Amer. Inst. Phys. 11, 363.Google Scholar
Chupp, E.L., Forrest, D.J., Ryan, J.M., Heslin, J., Reppin, C., Pinkau, K., Kanbach, G., Rieger, E., Share, G.H.: 1982, Astrophys. J. (Letters), submitted.Google Scholar
De Jager, C.: 1967, Solar Phys. 2, 327.CrossRefGoogle Scholar
De Jager, C., Machado, M.E., Schadee, A., Strong, K.T., Svestka, Z., Woodgate, B.E., Van Tend, W.: 1983, Solar Phys., accepted.Google Scholar
Duijveman, A., Hoyng, P., and Machado, M.E.: 1982, Solar Phys. 81, 137.Google Scholar
Friedman, H., Chubb, T.A., Kupperian, J.E., Kreplin, R.W., Lindsay, J.C.: 1958, Int. Geophys. Year Rocket Rept. Ser. 1, 183.Google Scholar
Giovanelli, R.G.: 1939, Astrophys. J. 89, 555.Google Scholar
Hoyng, P., Duijveman, A., Machado, M.E., Rust, D.M., Svestka, Z., Boelee, A., De Jager, C., Frost, K.J., Lafleur, H., Simnett, G.M., Van Beek, H.F., Woodgate, B.E.: 1981, Astrophys. J. (Letters) 246, L155.Google Scholar
Hoyng, P., Marsh, K.A., Ziring, H., Dennis, B.R. : 1982, Astrophys. J., submitted.Google Scholar
Moreton, G.E. and Severny, A.B.: 1968, Solar Phys. 3, 282.Google Scholar
Spicer, D.S.: 1982, Space Sci. Rev. 31, 351.CrossRefGoogle Scholar
Svestka, Z.: 1965, Adv. Astron. Astrophys. 3, 119.Google Scholar
Svestka, Z., Stewart, R.T., Hoyng, P., Van Tend, W., Acton, L.W., Gabriel, A.H., Rapley, C.G., Boelee, A., Bruner, E.C., De Jager, C., Lafleur, H., Nelson, G., Simnett, G.M., Van Beek, H.F., Wagner, W.J.: 1982, Solar Phys. 75, 305.Google Scholar
Tanaka, K., Smith, Z., Dryer, M.: 1980, in: Dryer, M. and Tandberg-Hanssen, E. (eds) : Solar and Interplanetary Dynamics, int. Astron. Union Symp. 91, 231.Google Scholar
Van Beek, H.F., De Jager, C., Fryer, R., Schadee, A., Svestka, Z., Boelee, A., Duijveman, A., Galama, M., Hoekstra, R., Hoyng, P., Imhof, J.P., Lafleur, H., Machado, M.E., Maseland, H.V.A.M., Mels, W.A., Schrijver, J., Simnett, G.M., Van der Laan, J.J.M., Van Rens, P., Van Tend, W., Werkhoven, F., Willmore, A.P., Wilson, J.W.G., Zandee, W.: 1981, Astrophys. J. (Letters) 246, L157.Google Scholar