Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T19:51:35.743Z Has data issue: false hasContentIssue false

Non-Thermal Activity and Particle Acceleration in Clusters of Galaxies

Published online by Cambridge University Press:  30 March 2016

Vahe’ Petrosian*
Affiliation:
Stanford University, Stanford, CA 94305-4060

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evidence for non-thermal activity in clusters of galaxies is well established from radio observations of synchrotron emission by relativistic electrons, and new windows (in EUV and Hard X-ray ranges) have provided more powerful tools for its investigation. The hard X-ray observations, notably from Coma, are summarized and results of a new RXTE observations of a high red-shift cluster are presented. It is shown that the most likely emission mechanism for these radiations is the inverse Compton scattering of the cosmic microwave background photons by the same electrons responsible for the radio radiation. Various scenarios for acceleration of the electrons are considered and it is shown that the most likely model is episodic acceleration by shocks or turbulence, presumably induced by merger activity, of high energy electrons injected into the inter-cluster medium by galaxies or active galactic nuclei.

Type
I. Joint Discussions
Copyright
Copyright © Astronomical Society of Pacific 2005

References

Blasi, P. 2000, ApJ, 532, L9 CrossRefGoogle Scholar
Bowyer, S. & Hwang, C-Y. (eds) 2003, ASP Conf. Ser. 301 Google Scholar
Clarke, T. E. et al. 2001, ApJ, 547, L111 CrossRefGoogle Scholar
Clarke, T. E. 2003 in ASP Conf. Ser. 301, eds. Bowyer, S. & Hwang, C-Y, 185 Google Scholar
Eilek, Jean 1999, eds. Böhringer, H. Feretti, L. & Schucker, P., MPR Rep. 271 Google Scholar
EnBlin, T. A., Lieu, R., & Biermann, P. 1999, A&A, 344, 409 Google Scholar
Epstein, R. I. 1973, ApJ, 183, 593 Google Scholar
Fusco-Femiano, et al. 1999, ApJ, 513, L21 and 2000, ApJ, 534, L7 Google Scholar
Giovannini, G., & Feretti, L. 2000, NewA, 5, 535 CrossRefGoogle Scholar
Goldschmidt, O. & Rephaeli, Y. 1993, ApJ, 411, 518 Google Scholar
Govoni, et al. 2003, in ASP Conf. Ser. 301, eds. Bowyer, S. & Hwang, C-Y, 501 Google Scholar
Hudson, D. S., Henriksen, M. J. & Colafrancesco, S. 2003, ApJ, 583, 706 CrossRefGoogle Scholar
Kim, K. T. et al. 1990, ApJ, 355, 29 CrossRefGoogle Scholar
Lieu, R. et al. 1996, Science, 274, 1335 Google Scholar
Petrosian, V. 1973, ApJ, 186, 291 Google Scholar
Petrosian, V. 2001, ApJ, 557, 560 CrossRefGoogle Scholar
Petrosian, V., Madejski, G. & Luli, K. 2003, in preparationGoogle Scholar
Rephaeli, Y. 1979, ApJ, 227, 364 Google Scholar
Rephaeli, Y. et al. 1999, ApJ, 511, L21 and 2002, ApJ, 579, 587 Google Scholar
Rudnick, L. & Blundell, K. M. 2003, ApJ, 588, 143 Google Scholar
Sarazin, C. L., & Lieu, R. 1998, ApJ, 494, L177 Google Scholar
Sarazin, C. L., & Kempner, J. C. 2000, ApJ, 533, 73 Google Scholar
Schlickeiser, R., Sievers, A., & Thiemann, H. 1987, A&A, 182, 21 Google Scholar
Sreekumar, P. et al. 1996, ApJ, 464, 628 Google Scholar