No CrossRef data available.
Published online by Cambridge University Press: 30 March 2016
The shape and amplitude of the galaxy – galaxy correlation functions, ξgg(r), are among the most widely used measures of the large-scale structure in the universe (Totsuji & Kihara 1969). The estimates, however, might be seriously affected by the limited size of the sample volume, or equivalently, the limited number of available galaxies. In fact, while the observable universe extends c/H0 ~ 3000h-1Mpc, most observational works to map the distribution of galaxies so far have been mainly applied to samples within ~ 100h-1Mpc from us. Thus a CfA redshift survey slice, for example, of 8h < α < 17h, 26.5° < δ < 32.5°, and cz ≾ 15000km/sec (de Lapparent et al. 1986, 1988) represents merely ~ 2 x 10-5 of the total volume of the observable universe. This clearly illustrates the importance of examining possible systematic biases and variations in the estimates of two-point correlation functions from instrinsically limited data. We studied such sample-to-sample variations by analysing subsamples extracted from large N-body simulation data.