Published online by Cambridge University Press: 30 March 2016
Up-to-date models of the interstellar medium should account for the existence of at least three phases of the interstellar gas, a hot phase at ˜ 106 K (HICM), a warm phase at ˜ 104 K (WICM) and a cold phase at ≤ 102 K (clouds). Recent observations of interstellar absorption lines are used to derive information about the physical properties and the spatial distribution of these phases. Evidence based on observations of C+ absorption lines indicates that the photoelectric threshold of interstellar dust grains is about 6 eV, much lower than previously thought. If the photoelectric threshold is indeed of this magnitude the WICM can easily be heated to temperatures in the range 6000 to 8000 K by photons of the general interstellar radiation field with λ > 912 Å. The analysis of interstellar CH+ and 0 VI absorption lines suggests that these lines are formed in gas associated with clouds in regions of enhanced pressure that occupy about 10 percent of interstellar space (SN cavities). The CH+ lines are formed in compressed WICM shells around clouds and the 0 VI lines in conductive interfaces between the WICM and the HICM. The velocity characteristics of the observed lines make shock waves a less probable source of the absorbing gases.