Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-12T18:41:33.115Z Has data issue: false hasContentIssue false

Large-Scale Structure and Termination of the Heliosphere

Published online by Cambridge University Press:  14 August 2015

W. M. Macek*
Affiliation:
Space Research Centre, Polish Academy of Sciences, Bartycka 18 A, PL-00 716 Warsaw, Poland; e-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The question of the boundaries of the heliosphere is considered. The termination heliospheric shock should exist because the solar wind plasma flowing supersonically away from the Sun must make a transition to a subsonic flow. The heliopause is at the outermost extend of the solar wind. Beyond the heliopause lies the (very local) interstellar wind. Intensity of radio emissions at 2 to 3 kHz detected by the Voyager plasma wave instrument in the outer heliosphere can be explained provided that the electron beams generating Langmuir waves exist in the post-shock plasma due to secondary shocks in the compressed solar wind beyond the termination shock. The field strengths of Langmuir waves required to generate the second harmonic emissions are 50 – 100 μ V m-1. Alternatively, the emissions are generated in the vicinity of the heliopause. The Voyager 1 and 2 are proceeding toward a likely source region for Langmuir wave and these waves may be observed in situ in the near future.

Type
II. Joint Discussions
Copyright
Copyright © Kluwer 1998

References

Axford, W. I. (1973) Interaction of the Interstellar Medium With the Solar Wind, Space Sci. Rev., 14, 582590.CrossRefGoogle Scholar
Baranov, V. B. (1990) Gasdynamics of the Solar Wind Interaction With the Interstellar Medium, Space Sci. Rev., 52, 89120.Google Scholar
Baranov, V. B. and Malama, , Yu, G. (1993) Model of the Solar Wind Interaction With the Local Interstellar Medium: Numerical Solution of Self-Consistent Problem, J. Geophys. Res., 98, 1515715163.CrossRefGoogle Scholar
Baranov, V. B. and Malama, Y. G. (1995) Effect of Local Interstellar Medium Hydrogen Fractional Ionization on the Distant Solar Wind and Interface Region, J. Geophys. Res., 100, 1475514761.Google Scholar
Belcher, J. W., Lazarus, A. J., McNutt, R. L. Jr. and Gordon, G. S. Jr. (1993) Solar Wind Conditions in the Outer Heliosphere and the Distance to the Termination Shock, J. Geophys. Res., 98, 1517715183.Google Scholar
Czechowski, A. and Grzȩdzielski, S. (1990) Frequency Drift of 3-kHz Interplanetary Radio Emissions: Evidence of Fermi Accelerated Trapped Radiation in a Small Heliosphere?, Nature, 344, 640641.Google Scholar
Czechowski, A. and Grzȩdzielski, S.S. (1994) Can a Charge-Exchange Induced Density Rise at the Heliopause Explain the Frequency Drift of the 3 kHz Voyager Signal?, Geophys. Res. Lett., 21, 27772780.Google Scholar
Donohue, D. J. and Zank, G. P. (1993) Steady State and Dynamical Structure of a Cosmic-Ray-Modified Termination Shock, J. Geophys. Res., 98, 1900519025.Google Scholar
Fahr, H. J. (1996) The Interstellar Gas Flow Through the Heliospheric Interface Region, Space Sci. Rev., 78, 199212.Google Scholar
Fahr, H. J., Neutsch, W., Grzȩsdzielski, S., Macek, W. M. and Ratkiewicz-Landowska, R. (1986) Plasma Transport Across the Heliopause, Space Sci. Rev., 43, 329381.Google Scholar
Fahr, H. J., Fichtner, H. and Grzedzielski, S. (1992) The Influence of the Anomalous Cosmic-Ray Component on the Dynamics of the Solar Wind, Solar Phys., 137, 355383.Google Scholar
Fahr, H. J., Osterbart, R. and Rucinski, D. (1995) Modulation of the Interstellar Oxygen-to-Hydrogen Ratio by the Heliospheric Interface Plasma, Astron. Astrophys., 294, 587600.Google Scholar
Filbert, P. C. and Kellogg, P. J. (1979) Electrostatic Noise at the Plasma Frequency Beyond the Earth’s Bow Shock, J. Geophys. Res., 84, 13691381.CrossRefGoogle Scholar
Grzȩdzielski, S. (1993) in Macek, W. M. (ed.) Emission of 2-3 kHz Band From the Shocked Solar Wind, The VLF Emissions in the Heliosphere, Proc. of a Topical Workshop, Warsaw, 8-12 June 1992, International Heliospheric Study Newsletter, 7, April 1993, pp. 5155.Google Scholar
Gurnett, D. A. (1995) Heliospheric Radio Emissions, Space Sci. Rev., 72, 243254.Google Scholar
Gurnett, D. A. and Kurth, W. S. (1994) Evidence that Jupiter is not the Source of the 2-3 kHz Heliospheric Radiation, Geophys. Res. Lett., 21, 15711574.Google Scholar
Gurnett, D. A. and Kurth, W. S. (1995) Heliospheric 2-3 kHz Radio Emissions and their Relationship to Large Forbush Decreases, Adv. Space Res., 16, (9)279290.Google Scholar
Gurnett, D. A. and Kurth, W. S. (1996) Radio Emissions from the Outer Heliosphere, Space Sci. Rev., 78, 5366.Google Scholar
Gurnett, D. A., Kurth, W. S., Poynter, R. J., Granroth, L. J., Cairns, I. H., Macek, W. M., Moses, S. L., Coroniti, F. V., Kennel, C. F. and Barbosa, D. D. (1989) First Plasma Wave Observations at Neptune, Science, 246, 14941498.Google Scholar
Gurnett, D. A., Kurth, W. S., Allendorf, S. C. and Poynter, R. J. (1993) Radio Emission from the Heliopause Triggered by an Interplanetary Shock, Science, 262, 199203.Google Scholar
Holzer, T. E. (1972) Interaction of the Solar Wind with the Neutral Component of the Interstellar Gas, J. Geophys. Res., 77, 54075431.Google Scholar
Kurth, W. S. (1990a) Sounding a Small Heliosphere, Nature, 344, 586587.Google Scholar
Kurth, W. S. (1990b) in Grzȩdzielski, S. and Page, D. E. (eds.), Radio Noise in the Heliospheric Cavity, Physics of the Outer Heliosphere, COSPAR Colloquia, vol. 1, Pergamon, New York, pp. 267275.CrossRefGoogle Scholar
Kurth, W. S. and Gurnett, D. A. (1991) New Observations of the Low-Frequency Interplanetary Radio Emissions, Geophys. Res. Lett., 18, 18011804.Google Scholar
Kurth, W. S. and Gurnett, D. A. (1993) Plasma Waves as Indicators of the Termination Shock, J. Geophys. Res., 98, 1512915136.Google Scholar
Kurth, W. S., Gurnett, D. A., Scarf, F. L. and Poynter, R. L. (1984) Detection of a Radio Emission at 3 kHz in the Outer Heliosphere, Nature, 312, 2731.Google Scholar
Kurth, W. S., Gurnett, D. A., Scarf, F. L. and Poynter, R. L. (1987) Long-Period Dynamic Spectrograms of Low-Frequency Interplanetary Radio Emissions, Geophys. Res. Lett., 14, 4952.Google Scholar
Macek, W. M. (1989) Reconnection at the Heliopause, Adv. Space Res., 9, (4)257261.Google Scholar
Macek, W. M. (1994) Mechanism of Low-Frequency Radio Emissions in the Heliosphere, Geophys. Res. Lett., 21, 249252.Google Scholar
Macek, W. M. (1996) Emission Mechanism for Low-Frequency Radiation in the Outer Heliosphere, Space Sci. Rev., 76, 231250.Google Scholar
Macek, W. M., Cairns, I. H. Kurth, W. S. and Gurnett, D. A. (1991a) Plasma Waves Generation Near the Inner Heliospheric Shock, Geophys. Res. Lett., 18, 357360.Google Scholar
Macek, W. M., Cairns, I. H., Kurth, W. S. and Gurnett, D. A. (1991b) Low-Frequency Radio Emissions in the Outer Heliosphere: Constraints on Emission Processes, J. Geophys. Res., 96, 38013806.Google Scholar
Macek, W. M., Czechowski, A. and Grzȩdzielski, S. (1995) Mechanism for Generation of Radio Emissions from the Planetary and Heliospheric Foreshocks, Adv. Space Res., 15, 467474.Google Scholar
Melrose, D. B. (1980) Plasma Astrophysics, Gordon and Breach, New York.Google Scholar
Nozawa, S. (1997) Effect of Magnetic Field in the 3-Dimensional Heliosphere, Highlights in Astronomy, this issueGoogle Scholar
Osterbart, R. and Fahr, H. J. (1992) A Boltzmann-Kinetic Approach to Describe the Entrance of Neutral Interstellar Hydrogen into the Heliosphere, Astron. Astrophys., 264, 260269.Google Scholar
Parker, E. N. (1963) Interplanetary Dynamical Processes, Interscience, New York.Google Scholar
Pauls, H. L. and Zank, G. P. (1996) Interaction of a Nonuniform Solar Wind with the Local Interstellar Medium, J. Geophys. Res., 101, 1708117092.Google Scholar
Pauls, H. L., Zank, G. P. and Williams, L. L. (1995) Interaction of the Solar Wind with the Local Interstellar Medium, J. Geophys. Res., 100, 2159521604.Google Scholar
Phillips, J. L., Bame, S. J., Feldman, W. C., Goldstein, B. E., Gosling, J. T., Hammond, C. M., McComas, D. J., Neugebauer, M., Scime, E. E. and Suess, S. T. (1995) Ulysses Solar Wind Plasma Observations at High Southerly Latitudes, Science, 268, 10301033.Google Scholar
Ratkiewicz, R., Barnes, A., Molvik, G. A., Spreiter, J. R. and Stahara, S. S. (1996) Hebospheric Termination Shock Motion due to Fluctuations in the Solar Wind Upstream Condition: Spherically Symmetric Model, J. Geophys. Res., 101, 2748327497.CrossRefGoogle Scholar
Ratkiewicz, R., Barnes, A. and Spreiter, J. R. (1997a) Heliospheric Termination Shock Motion in Response to LISM Variation: Spherically Symmetric Model, Geophys. Res. Lett., 24, 16591662.Google Scholar
Ratkiewicz, R., Barnes, A., Molvik, G. A., Spreiter, J. R., Stahara, S. S., Vinokur, M. and Venkateswaran, S. (1997b) Effect of the Local Interstellar Magnetic Field on the Heliospheric Configuration, Eos Trans. AGU, 77, (46) F575, AGU 1996 Fall Meeting, 15-19 December, 1996, San Francisco, USA; Effect of Varying Strength and Orientation of Local Interstellar Magnetic Field on Configuration of Exterior Heliosphere: 3D MHD Simulations, Astron. Astrophys., submitted.Google Scholar
Steinolfson, R. S. and Gurnett, D. A. (1995) Distances to the Termination Shock and Heliopause from a Simulation Analysis of the 1992-93 Heliospheric Radio Emission Event, Geophys. Res. Lett., 22, 651654.Google Scholar
Suess, S. T. (1990) The Heliopause, Rev. Geophys., 28, 97115.CrossRefGoogle Scholar
Suess, S. T. (1993) Temporal Variations in the Termination Shock Distance, J. Geophys. Res., 98, 1514715155.Google Scholar
Washimi, H. and Tanaka, T. (1996) 3-D Magnetic Field and Current System in the Heliosphere, Space Sci. Rev., 78, 8594.Google Scholar
Zank, G. P., Cairns, I. H., Donohue, D. J. and Matthaeus, W. H. (1994), Radio Emissions and the Heliospheric Termination Shock, J. Geophys. Res., 99, 1472914735.Google Scholar