Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-12T16:33:16.957Z Has data issue: false hasContentIssue false

Cataclysmic Variable Stars

Published online by Cambridge University Press:  14 August 2015

Brian Warner*
Affiliation:
Department of Astronomy, University of Cape Town, Rondebosch 7700, South Africa

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of single stars on and away from the main sequence is well understood. A degenerate core is formed in a star as the star leaves the main sequence and expands to a giant with a radius typically 50 - 500 Ro . Observationally it is known that most stars are members of binary systems, and among these many have orbital periods less than 100 y. It can happen, therefore, that the expanding envelope of the primary of a binary system can reach to the secondary. As this happens, the primary fills its Roche tidal lobe and transfers matter to the secondary; if the primary has a radiative envelope the rate at which this occurs exceeds the Eddington limit of the secondary, which therefore repels the incoming gas, forming a common envelope around the two stars. Friction within the envelope causes the stars to spiral towards each other until the energy and angular momentum extracted from the binary orbit and transferred to the envelope are sufficient to eject the common envelope as a planetary nebula, leaving a short period binary comprising a white dwarf and a main sequence star.

This mechanism of producing short period binaries containing white dwarfs, proposed by Ostriker and by Paczynski (1976), is the probable origin of the class of objects known as Cataclysmic Variable Stars (CVs), which encompass the classical novae, dwarf novae, novalike variables and a variety of related objects. Evidence has been accumulating for forty years (Crawford & Kraft 1956, Warner 1995a) that every CV consists of a secondary star (usually a dwarf, but a few systems contain giants) filling its Roche lobe and transferring mass to a white dwarf primary. In systems of normal chemical composition the orbital periods lie between 75 mins and ~250 d, with the majority having . A few hydrogen-free systems are known for which 17 mins < Porb < 50 mins. It should be noted that CVs are very compact binary systems: for h such a binary would fit inside the Sun.

Type
I. Invited Discourses
Copyright
Copyright © Kluwer 1998

References

Applegate, J.H., 1992. ApJ, 385, 621.Google Scholar
Balbus, S.A. & Hawley, J.F., 1991, ApJ, 376, 214 Google Scholar
Buckley, D.A.H., et al, 1997, MNRAS, 287, 117 Google Scholar
Carroll, B.W., et al, 1985. ApJ, 266, 529.Google Scholar
Clemens, C. et al, 1998. ApJ, 496, 352.Google Scholar
Crawford, J.A. & Kraft, R.P., 1956, ApJ, 123, 44 Google Scholar
Cropper, M.S., 1990. Sp. Sci. Rev. 54, 195.Google Scholar
de Martino, D., et al., 1994, Astr. Astrophys., 284, 125 Google Scholar
Ghosh, P. & Lamb, F.K., 1979, ApJ, 234, 296 Google Scholar
Harvey, D.A. et al, 1998. ApJ Letts., 493, L105.Google Scholar
Hellier, C., 1992, MNRAS, 258, 578 Google Scholar
Hellier, C., Cropper, M.S. & Mason, K.O., 1991, MNRAS, 248, 233 Google Scholar
Hjellming, R.M., 1990. Led. Notes Phys. 364, 169.Google Scholar
Hoare, M.G. & Drew, J.E. 1991, MNRAS, 249, 452 Google Scholar
Honeycutt, R.K. et al., 1998. ApJ, 495, 933 Google Scholar
Horne, K., 1985. MNRAS, 213, 129.Google Scholar
Horne, K. & Cook, M.C., 1985, MNRAS, 214, 307 Google Scholar
Horne, K. & Saar, S.H., 1991. ApJ, 374, L55.Google Scholar
Hoshi, R., 1979. Prog. Theor. Phys., 61, 1307.Google Scholar
Ichikawa, S., Hirose, M. & Osaki, Y., 1993, Pub. astr. Soc. Japan, 45, 243 Google Scholar
Kahabka, P. & van den Heuvel, E.P.J., 1997, Ann. Rev. Astr. Astrophys, 35, 69 Google Scholar
Kovetz, A. & Prialnik, D., 1985 ApJ, 291, 812.Google Scholar
Kraft, R.P., 1961, ApJ, 134, 171 Google Scholar
Kraft, R.P., 1962, ApJ, 135, 408 Google Scholar
Kraft, R.P., 1964, ApJ, 139, 457 Google Scholar
Lamb, F.K., 1989, in Timing Neutron Stars, eds. H.Ogelman, & Heuvel Kluwer, E.P.J. van den, p. 649.Google Scholar
Lwio, M. & Truran, J.W., 1992. ApJ, 389, 695.Google Scholar
Lubow, S., 1991. ApJ, 381, 259.Google Scholar
Marsh, T.R. & Horne, K., 1988. MNRAS, 235, 269.Google Scholar
Mauche, C., 1998. ApJ In press.Google Scholar
McDermott, P.N. & Taam, R.E., 1989. ApJ, 342, 1019.Google Scholar
Meintjies, P.J. et al., 1994. ApJ, 434, 292.Google Scholar
Mestel, L., 1952. MNRAS, 112, 598.Google Scholar
Mestel, L. & Spruit, H.C., 1987. MNRAS, 226, 57.Google Scholar
Meyer, F. & Meyer-Hofmeister, E., 1981. Astr. Astrophys., 104, L10.Google Scholar
Mineshige, S., 1991. MNRAS, 250, 253.Google Scholar
Mineshige, S. & Wood, J., 1989. MNRAS, 241, 259.Google Scholar
Murray, J. 1996. MNRAS, 279, 402.Google Scholar
Nather, R.E., 1978. PASP, 90, 477.Google Scholar
Nather, R.E. & Robinson, E.L., 1974. ApJ, 190, 637.Google Scholar
Nather, R.E. & Warner, B., 1971. MNRAS, 152, 209.Google Scholar
Paczynski, B., 1976. Int. Astr. Union Symp. No. 73, p. 75.Google Scholar
Paresce, F. et al, 1995, Astr. Astrophys., 299, 823 Google Scholar
Patterson, J., 1981. ApJ Suppl., 45, 517.Google Scholar
Patterson, J. & Raymond, J.C., 1985, ApJ, 292, 535 Google Scholar
Patterson, J., Halpern, J.P. & Shambrook, A., 1993, ApJ, 419, 83 Google Scholar
Patterson, I., Robinson, E.L. & Nather, R.E., 1977, ApJ, 214, 144 Google Scholar
Payne-Gaposchkin, C., 1957. The Galactic Novae, North-Holland, Amsterdam.Google Scholar
Robinson, E.L., et al, 1981, ApJ, 251, 611 Google Scholar
Robinson, E.L. et al, 1998. ApJ, In press.Google Scholar
Rutten, R.G.M. et al, 1992, Astr. Astrophys., 265, 159 Google Scholar
Schmidt, G.D., Liebert, J. & Stockman, H.S., 1995, ApJ, 441, 414 Google Scholar
Schwope, A.D. et al, 1995, Astr. Soc. Pacifie Confi Ser., 85, 166 Google Scholar
Selvelli, P.L. et al, 1990. IAU Colloq. No. 122, p. 65.Google Scholar
Semeniuk, I., 1980, Astr. Astrophys. Suppl, 39, 29 Google Scholar
Shakura, N.I. & Sunyaev, R.A., 1973, Astr. Astrophys., 24, 337 Google Scholar
Shara, M.M. & Prialnik, D., 1994. Astr. J., 107, 1542.Google Scholar
Shara, M.M. et al, 1997, Astr. J, 114, 258 Google Scholar
Smak, I., 1967, Acta Astr., 17, 255 Google Scholar
Tapia, S., 1977. ApJ, 212, L125.Google Scholar
Taylor, A.R. et al, 1998, Nature, 335, 235 Google Scholar
Tout, C.A. & Pringle, J.E., 1992, MNRAS, 256, 269 Google Scholar
Tout, C.A. & Pringle, J., 1992b. MNRAS, 259, 604.Google Scholar
van den Heuvel, E.P.J. et al., 1992, Astr. Astrophys., 262, 97 Google Scholar
Verbunt, F. & Zwaan, C., 1981. Astr. Astrophys., 100, L7.Google Scholar
Vogt, N., 1974, Astr. Astrophys., 36, 369 Google Scholar
Walker, M.F., 1956, ApJ, 123, 68 Google Scholar
Warner, B., 1975, MNRAS, 170, 219 Google Scholar
Warner, B., 1986a. MNRAS, 222, 11.Google Scholar
Warner, B., 1986b. MNRAS, 219, 347.Google Scholar
Warner, B., 1988a. High Speed Astronomical Photometry, Cambridge University Press.Google Scholar
Warner, B., 1988b. Nature, 336, 129.Google Scholar
Warner, B., 1995a. Cataclysmic Variable Stars, Cambridge University Press.Google Scholar
Warner, B., 1995b. Astrophys. Sp. Sci., 226, 187.Google Scholar
Warner, B., 1995c. Astrophys. Sp. Sci., 225, 249.Google Scholar
Warner, B., 1995d. Astr. Soc. Pacifie Confi Ser., 85, 343.Google Scholar
Warner, B., & Robinson, E.L., 1972a. NaturePhys. Sci., 239, 2.Google Scholar
Warner, B. & Robinson, E.L., 1972b. MNRAS, 159, 101.Google Scholar
Warner, B. & van Zyl, L., 1998. In preparation.Google Scholar
Warner, B., O’Donoghue, D. & Wargau, W., 1989, MNRAS, 238, 73 Google Scholar
Warner, B. et al, 1972, MNRAS, 159, 321 Google Scholar
Watson, M.G., King, A.R. & Heise, J., 1985, Sp. Sci. Rev., 40, 127 Google Scholar
Whitehurst, R., 1988, MNRAS, 232, 35 Google Scholar
Wickramasinghe, D.T., 1993. in Cataclysmic Variables and Related Physics, eds. O.Regev, & G., Shaviv, Inst. Phys. Publ., Bristol, p. 213.Google Scholar
Wickramasinghe, D.T., Wu, K. & Ferrario, L., 1991, MNRAS, 249, 460.Google Scholar
Wood, K.S., Imamura, J.N. & Wolff, M.T., 1992. ApJ, 398, 593 Google Scholar
Wu, K., Wickramasinghe, D.T. & Warner, B. 1995a. Astrophys. & Sp. Sci. Library 205, 315.Google Scholar
Wu, K., Wickramasinghe, D.T. & Warner, B., 1995b. Proc. Astr. Soc. Australia, 12, 60.Google Scholar