Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-12T20:39:34.606Z Has data issue: false hasContentIssue false

The 2Mass Redshift Survey

Published online by Cambridge University Press:  14 August 2015

J. Huchra
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA USA
E. Tollestrup
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA USA
S. Schneider
Affiliation:
University of Massachusetts, Amherst, MA USA
M. Skrutski
Affiliation:
University of Massachusetts, Amherst, MA USA
T. Jarrett
Affiliation:
IPAC, Caltech, Pasadena, CA, USA
T. Chester
Affiliation:
IPAC, Caltech, Pasadena, CA, USA
R. Cutri
Affiliation:
IPAC, Caltech, Pasadena, CA, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the current convergence of determinations of the Hubble Constant (e.g. The Extragalactic Distance Scale, 1997, Livio, Donahue and Panagia, eds.) to values within ±25% rather than a factor of two, and the clear possibility of determining q0 using high redshift supernovae (Garnavich et al. 1998), the major remaining problem in observational cosmology is the determination of Ω — what is the dark matter, how much is there, and how is it distributed?

The most direct approach to the last two parts of the question has been to study galaxy dynamics, first through the motions of galaxies in binaries, groups and clusters, and in the last decade and a half, driven by the observation of our motion w.r.t. the Cosmic Microwave Background (CMB) and thenotion that DM must be clumped on larger scales than galaxy clusters if is to be unity, through the study of large scale galaxy flows.

The ratio of the mass density to the closure mass density, Ω, is thought by most observers to be ~0.1-0.3, primarily based on the results of dynamical measurements of galaxy clusters and, more recently, gravitational lensing studies of clusters. In contrast, most theoretical cosmologists opt for a high density universe, Ω = 1.0, based on the precepts of the inflation scenario, the difficulty of forming galaxies in low density models given the observed smoothness of the microwave background radiation, and the observational evidence from the matching of the available large scale flow measurements (and the absolute microwave background dipole velocity) to the local density field. However this last result is extremely controversial—matching the velocity field to the density field derived from IRAS (60μ) selected galaxy samples yields high Ω values (e.g., Dekel et al. 1993) but matching to optically selected samples yields low values (Hudson 1994; Lahav et al. 1994; Santiago et al. 1995). On small scales, the high Ω camp argues that the true matter distribution is much more extended than the distribution of galaxies, so the dynamical mass estimates are biased low.

Type
II. Joint Discussions
Copyright
Copyright © Kluwer 1998

References

Aaronson, M., Huchra, J., Mould, J., Tully, R.B., Fisher, J.R., van Woerden, H., Goss, W.M., Chamaraux, P., Mebold, U., Siegman, B., Bemman, B. & Persson, S.E. 1982, ApJS 50, 241 Google Scholar
Bothun, G., Aaronson, M., Schommer, R., Mould, J., Huchra, J. & Sullivan, W.III. 1985, ApJS 57, 423 Google Scholar
Courteau, S. et al. 1993, ApJ 412, L51 Google Scholar
da Costa, L., et al. 1994, ApJ 424, L1 Google Scholar
Davis, M. & Peebles, P.J.E. 1983, Ann. Rev. A&Ap. 21, 109 Google Scholar
Dekel, A. 1994, Ann. Rev. A&Ap. 32, 371 Google Scholar
Dekel, A. et al. 1993, ApJ 412, 1 Google Scholar
Dressler, A. & Faber, S. 1990, ApJ 354 Google Scholar
Fisher, K., Huchra, J., Strauss, M., Davis, M., Yahil, A. and Schlegel, D. 1995, ApJS 100, 61 Google Scholar
Freedman, W. 1990, ApJL 355, L35 Google Scholar
Garnavich, P. et al. 1998, ApJL 493, 53.Google Scholar
Gavazzi, G. & Boselli, A. 1996, Astro. Lett. & Comm. 35, 1 Google Scholar
Geller, M. & Huchra, J. 1989, Science 246, 897 Google Scholar
Geller, M. & Peebles, P.J.E. 1973, ApJ 184, 329 Google Scholar
Guzzo, L. 1996, in Mapping, Measuring & Modelling the Universe, eds. Coles, P. & Martinez, V., APS.Google Scholar
Huchra, J. et al. 1990, ApJS 72, 433 Google Scholar
Huchra, J. 1996, in The Big Bang & Diffuse Background Radiation, IAU Symposium 168, Kafatos, M. & Kondo, Y., eds., p 143.Google Scholar
Hudson, M.J. 1994, MNRAS 266, 468 Google Scholar
Kraan-Korteweg, R., et al. 1996, Nature 379, 519 Google Scholar
Lahav, O. et al. 1994, ApJ 423,L93 Lauer, T. & Postman, M. 1994, ApJ 425, 418 Google Scholar
Lawrence, A. et al. 1998, MNRAS, in press. (QDOT)Google Scholar
Lynden-Bell, D. et al. 1988, ApJ 326, 19 Google Scholar
Marzke, R., Geller, M., daCosta, L. & Huchra, J. 1995, AJ, 110, 477 Google Scholar
Marzke, R., Huchra, J. & Geller, M. 1994, ApJ 428, 43 Google Scholar
Marzke, R., Huchra, J. & Geller, M. 1996, AJ 112, 1803 Google Scholar
Mathewson, D., & Ford, V. 1994, ApJ 434, L39 Google Scholar
Perlmutter, S., et al. 1998, ApJL in press (Astroph 9712212).Google Scholar
Pierce, M. h Tully, R.B. 1992, ApJ 387, 47 Google Scholar
Postman, M., & Lauer, T. 1995, ApJ 440, 28 Google Scholar
Riess, A. Press, W. & Kirshner, R. 1995, ApJ 445, L91 Google Scholar
Rowan-Robinson, M. et al. 1990, MNRAS 247, 1 Google Scholar
Rubin, V.C., et al. 1976, ApJ 208, 662 Google Scholar
Shaya, E., Tully, R.B. & Pierce, M. 1992, ApJ391, 16 Google Scholar
Santiago, B. et al. 1995, ApJ 446, 457 Google Scholar
Saunders, W. et al. 1998, in preparation.Google Scholar
Scaramella, R. et al. 1994, ApJ 422, 1 Google Scholar
Strauss, M. & Willick, J 1995, Physics Reports 261, 271 Google Scholar
Strauss, M., Huchra, J., Davis, M., Yahil, A., Fisher, K. & Tonry, J. 1992, ApJS 83, 29 Google Scholar
Willick, J., Courteau, S., Faber, S., Burstein, D., Dekel, A., and Strauss, M. 1997, ApJS, 109, 333 Google Scholar
Zurek, W. et al. 1994, ApJ 431, 559 Google Scholar