Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T19:52:48.517Z Has data issue: false hasContentIssue false

ZINBIEL ALGEBRAS AND COMMUTATIVE ALGEBRAS WITH DIVIDED POWERS

Published online by Cambridge University Press:  25 November 2009

IOANNIS DOKAS*
Affiliation:
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we prove that any Zinbiel algebra can be endowed with the structure of commutative algebra with divided powers. We introduce the notion of universal enveloping Zinbiel algebra of a commutative algebra with divided powers algebras. We prove that the free divided powers algebra on a free module M, is the divided powers sub-algebra generated by M, of the divided powers algebra induced by the free Zinbiel algebra on M. Finally, we construct a basis for the enveloping Zinbiel algebra.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2009

References

REFERENCES

1.Berthelot, P. and Ogus, Arthur, Notes on Crystalline Cohomology, Annals of Mathematics Studies (Princeton University Press, 1978).Google Scholar
2.Cartan, H., Algèbres de Eilenberg-MacLane et homotopie, Seminaire Henri Cartan, 7ème année 1954-1955, 2ème éd. Ecole Normale Supérieure, Paris (1956).Google Scholar
3.Fresse, B., On the homotopy of simplicial algebras over an operad, Trans. Amer. Math. Soc. 352 (2000), 41134141.CrossRefGoogle Scholar
4.Loday, J.-L., Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77 (1995), 189196.CrossRefGoogle Scholar
5.Loday, J.-L., Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, 301 (Springer-Verlag, Berlin, 1998).Google Scholar
6.Loday, J.-L., Dialgebras, in Dialgebras and related operads, Springer Lecture Notes in Math. 1763 (2001), 766.Google Scholar
7.Loday, J.-L., Scindement d' associativité et algèbres de Hopf. Proceedings of the colloquium dedicated to the memory of Jean Leray, Nantes, France, June 17–18, 2002. Paris: Societe Mathematique de France. Seminaires et Congres 9, 155172 (2004).Google Scholar
8.Reutenauer, C., Free Lie algebras, London Math. Soc. Monos. (N.S), No. 7 (Oxford Univ. Press, 1993).Google Scholar
9.Roby, N., Les algèbres à puissances divisées, Bull. Sc.math. Série 2, t. 89 (1965), 7591.Google Scholar
10.Roby, N., Lois polynomes et lois formelles en théorie des modules, Annales scientifiques de l' E.N.S. 3 serie, tome 80, num. 3 (1963), 213–348.Google Scholar
11.Roby, N., Construction de certain algèbres à puissances divisées, Bull. Soc. Math. France 96 (1968), 97113.Google Scholar
12.Soublin, J.-P., Puissances divisées caractéristique non nulle, Journal of Algebra 110 (1987), 523529.CrossRefGoogle Scholar