Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T07:17:22.611Z Has data issue: false hasContentIssue false

THIRD-REGULAR BI-EMBEDDINGS OF LATIN SQUARES

Published online by Cambridge University Press:  25 August 2010

D. M. DONOVAN
Affiliation:
Centre for Discrete Mathematics and Computing, University of Queensland, St Lucia 4072, Australia e-mail: [email protected]
M. J. GRANNELL
Affiliation:
Department of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK e-mail: [email protected]
T. S. GRIGGS
Affiliation:
Department of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For each positive integer n ≥ 2, there is a well-known regular orientable Hamiltonian embedding of Kn, n, and this generates a regular face 2-colourable triangular embedding of Kn, n, n. In the case n ≡ 0 (mod 8), and only in this case, there is a second regular orientable Hamiltonian embedding of Kn, n. This paper presents an analysis of the face 2-colourable triangular embedding of Kn, n, n that results from this. The corresponding Latin squares of side n are determined, together with the full automorphism group of the embedding.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

REFERENCES

1.Archdeacon, D., Topological graph theory – A survey, Congr. Numer. 115 (1996) 554.Google Scholar
2.Biggs, N. L. and White, A. T., Permutation groups and combinatorial structures (Cambridge University Press, Cambridge, UK, 1979).CrossRefGoogle Scholar
3.Donovan, D. M., Drápal, A., Grannell, M. J., Griggs, T. S. and Lefevre, J. G., Quarter-regular biembeddings of Latin squares, Discrete Math. 310 (2010) 692699.CrossRefGoogle Scholar
4.Grannell, M. J., Griggs, T. S. and Knor, M., Regular Hamiltonian embeddings of the complete bipartite graph Kn,n in an orientable surface, Congr. Numer. 163 (2003) 197205.Google Scholar
5.Grannell, M. J., Griggs, T. S. and Knor, M., Biembeddings of Latin squares and Hamiltonian decompositions, Glasgow Math. J. 46 (2004) 443457.CrossRefGoogle Scholar
6.Grannell, M. J., Griggs, T. S., Knor, M. and Širáň, J., Triangulations of orientable surfaces by complete tripartite graphs, Discrete Math. 306 (2006) 600606.CrossRefGoogle Scholar
7.Gross, J. L. and Tucker, T. W., Topological Graph Theory (John Wiley, New York, 1987).Google Scholar
8.Stahl, S. and White, A. T., Genus embeddings for some complete tripartite graphs, Discrete Math. 14 (1976) 279296.CrossRefGoogle Scholar
9.White, A. T., Symmetrical maps, Congr. Numer. 45 (1984) 257266.Google Scholar