Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T12:19:09.275Z Has data issue: false hasContentIssue false

A structure theorem for SI-Modules

Published online by Cambridge University Press:  18 May 2009

Dinh van Huynh
Affiliation:
Institute of Mathematics, P.O. Box 631, Hanoi, Vietnam
Robert Wisbauer
Affiliation:
Institute of Mathematics, Universitätsstr 1, 4000 Düsseldorf, Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An associative ring R is called a left SI-ring if every singular left R-module is injective. In Goodearl [4] it is shown that these rings have a finite ring decomposition into a ring K with K/Soc K left semisimple, and simple rings which are Morita equivalent to left SI-domains.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1992

References

REFERENCES

1.Baccella, G., Generalized V—Rings and Von Neumann regular rings, Rend. Sent. Mat. Univ. Padova 72 (1984) 117133.Google Scholar
2.Dung, Nguyen V., van Huynh, Dinh and Wisbauer, R., Quasi-injective modules with acc or dcc on essential submodules, Arch. Math. (Basel) 53 (1989) 252255.CrossRefGoogle Scholar
3.van Huynh, Dinh, Smith, P. F. and Wisbauer, R., A note on GV-modules with Krul dimension, Glasgow Math. J. 32 (1990), 389390.CrossRefGoogle Scholar
4.Goodearl, K. R., Singular torsion and the splitting properties, Mem. Amer. Math. Soc. 124 (1972).Google Scholar
5.Osofsky, B. and Smith, P. F., Cyclic modules whose quotients have all complement modules direct summands, J. Algebra 139 (1991), 342354.CrossRefGoogle Scholar
6.Page, S. S. and Yousif, M. F., Relative injectivity and chain conditions, Comm. Algebra 17 (1989) 899924.CrossRefGoogle Scholar
7.Smith, P. F., Rings characterized by their cyclic modules, Canad. J. Math. 31 (1979) 93–11.CrossRefGoogle Scholar
8.Wisbauer, R., Localization of modules and the central closure of rings, Comm. Algebra 9 (1981), 14551493.CrossRefGoogle Scholar
9.Wisbauer, R., Generalized co-semisimple modules, Comm. Algebra. 18 (1990), 42354253.CrossRefGoogle Scholar
10.Wisbauer, R., Foundations of module and ring theory (Gordon and Breach, New York, 1991).Google Scholar
11.Yousif, M. F., SI-modules, Math. J. Okayama Univ. 28 (1966) 133146.Google Scholar