Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:54:27.380Z Has data issue: false hasContentIssue false

Spectral properties of holomorphic automorphism with fixed point

Published online by Cambridge University Press:  18 May 2009

T. Mazur
Affiliation:
Maciej Skwarczyński, 01698 Warsaw, Smolenskiego 27a m. 14, Poland
M. Skwarczyński
Affiliation:
Maciej Skwarczyński, 01698 Warsaw, Smolenskiego 27a m. 14, Poland
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Hilbert space methods in the theory of biholomorphic mappings were applied and developed by S. Bergman [1, 2]. In this approach the central role is played by the Hilbert space L2H(D) consisting of all functions which are square integrable and holomorphic in a domain D ⊂ ℂN. A biholomorphic mapping φ:D ⃗ G induces the unitary mapping Uφ:L2H(G)L2H(D) defined by the formula

Here ∂φ/∂z denotes the complex Jacobian of φ. The mapping Uϕ is useful, since it permits to replace a problem for D by a problem for its biholomorphic image G (see for example [11], [13]). When ϕ is an automorphism of D we obtain a unitary operator Uϕ on L2H(D).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1986

References

REFERENCES

1.Bergman, S., Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. 169 (1933), 142and 172 (1934), 89–123.CrossRefGoogle Scholar
2.Bergman, S., The kernel function and conformal mapping, Math. Surveys 5, second ed. (Amer. Math. Soc., 1970).Google Scholar
3.Cartan, H., Les fonctions de deux variables complexes et le problème de la représentation analytique, J. Math. Pures Appl. (9) 10 (1931), 1114.Google Scholar
4.Cartan, H., Sur les groupes de transformations analytiques, Actualités Sci. Indust., Exposes Math. 9 (Paris, 1935).Google Scholar
5.Dieudonné, J., Foundations of modern analysis (Academic Press, 1960).Google Scholar
6.Fisher, S., Eigenvalues and eigenvectors of compact composition operators on HP(Ω), Indiana Univ. Math. J. 32 (1983), 843847.CrossRefGoogle Scholar
7.Hoffman, K., Banach spaces of analytic functions (Prentice-Hall, 1962).Google Scholar
8.Kamowitz, H., The spectra of composition operators on Hp, J. Fund. Anal. 18 (1975), 132150.CrossRefGoogle Scholar
9.Mazur, T., Spectral properties of automorphisms of the unit disc, Demonstratio Math., 17 (1984), 10691072.Google Scholar
10.Nordgren, A., Composition operators on Hilbert space, in Bachar, J. M. Jr and Hadwin, D. W., Hilbert space operators, proceedings, 1977, Lecture Notes in Mathematics 693 (Springer, 1978), 3763.Google Scholar
11.Ramadanov, I. and Skwarczyński, M., An angle in L2(ℂ) determined by two plane domains, Bull. Acad. Polon. Sci., to appear.Google Scholar
12.Rudin, W., Functional Analysis (McGraw-Hill, 1973).Google Scholar
13.Skwarczyński, M., The invariant distance in the theory of pseudo-conformal transformations and the Lu Qi-keng conjecture, Proc. Amer. Math. Soc. 22 (1969), 305310.Google Scholar