Published online by Cambridge University Press: 18 May 2009
The Hilbert space methods in the theory of biholomorphic mappings were applied and developed by S. Bergman [1, 2]. In this approach the central role is played by the Hilbert space L2H(D) consisting of all functions which are square integrable and holomorphic in a domain D ⊂ ℂN. A biholomorphic mapping φ:D ⃗ G induces the unitary mapping Uφ:L2H(G) ⃗ L2H(D) defined by the formula
Here ∂φ/∂z denotes the complex Jacobian of φ. The mapping Uϕ is useful, since it permits to replace a problem for D by a problem for its biholomorphic image G (see for example [11], [13]). When ϕ is an automorphism of D we obtain a unitary operator Uϕ on L2H(D).