Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-08T15:29:13.059Z Has data issue: false hasContentIssue false

SOME REMARKS ON LANDAU–GINZBURG POTENTIALS FOR ODD-DIMENSIONAL QUADRICS

Published online by Cambridge University Press:  18 December 2014

VASSILY GORBOUNOV
Affiliation:
Institute of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom e-mail: [email protected]
MAXIM SMIRNOV
Affiliation:
Mathematics Section, The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the possibility of constructing a Frobenius manifold for the standard Landau–Ginzburg model of odd-dimensional quadrics Q2n+1 and matching it with the Frobenius manifold attached to the quantum cohomology of these quadrics. Namely, we show that the initial conditions of the quantum cohomology Frobenius manifold of the quadric can be obtained from the suitably modified standard Landau–Ginzburg model.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2014 

References

REFERENCES

1.Bayer, A. and Manin, Yu. I., (Semi)simple exercises in quantum cohomology, in The Fano Conference (University Torino, Turin, 2004), 143173.Google Scholar
2.Bernstein, J., Algebraic theory of $\mathcal{D}$-modules. Available at http://www.math.tau.ac.il/~bernstei.Google Scholar
3.Budur, N., On the V-filtration of D-modules, in Geometric methods in algebra and number theory, Progress in Mathematics, vol. 235 (Birkhaeuser Boston, Boston, MA, 2005), 5970.CrossRefGoogle Scholar
4.Dimca, A., Sheaves in topology, Universitext (Springer-Verlag, Berlin, 2004), 236.CrossRefGoogle Scholar
5.Douai, A., Quantum differential systems and some applications to mirror symmetry, arXiv:1203.5920 [math.AG] (preprint 2012).Google Scholar
6.Douai, A., Notes sur les systèmes de Gauss-Manin algébriques et leurs transformés de Fourier. Prépublication mathématique 640 du Laboratoire J.-A. Dieudonné (2002). Available at http://math.unice.fr/douai/recherche.htmlGoogle Scholar
7.Douai, A. and Sabbah, C., Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I), Proceedings of the International Conference in Honor of Frédéric Pham (Nice, 2002). Ann. Inst. Fourier (Grenoble) 53 (2003), no. 4, 1055–1116.Google Scholar
8.Douai, A. and Sabbah, C., Gauss-Manin systems, Brieskorn lattices and Frobenius structures (II), Frobenius manifolds, Aspects Mathematics, vol. E36 (Vieweg, Wiesbaden, 2004), 118.Google Scholar
9.Dubrovin, B., Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Mathematics, vol. 1620 (Springer, Berlin, 1996), 120348.CrossRefGoogle Scholar
10.Eguchi, T., Hori, K. and Xiong, C., Gravitational quantum cohomology, Int. J. Mod. Phys. A 12 (1997), 17431782.CrossRefGoogle Scholar
11.Gepner, D., Exactly solvable string compactifications on manifolds of SU(N) holonomy, Phys. Lett. B. 199 (1987), 380388.CrossRefGoogle Scholar
12.Givental, A., Homological geometry and mirror symmetry, Proceedings of the International Congress of Mathematicians, Zürich 1994, vol. 1 (Birkhäuser, Switzerland, 1995), 473480.Google Scholar
13.Givental, A., A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progress in Mathematics, vol. 160 (Birkhäuser Boston, Boston, MA, 1998), 141175.CrossRefGoogle Scholar
14.Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer-Verlag, New York-Heidelberg, 1977), xvi+496.CrossRefGoogle Scholar
15.Hertling, C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics, vol. 151 (Cambridge University Press, Cambridge, 2002), x+270.CrossRefGoogle Scholar
16.Hori, K. and Vafa, C., Mirror symmetry, arXiv:hep-th/0002222 (preprint 2000).Google Scholar
17.Kontsevich, M., Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, (Zürich, 1994), vol. 1, 2 (Birkhäuser, Basel, 1995), 120139.CrossRefGoogle Scholar
18.Manin, Yu. I., Frobenius manifolds, quantum cohomology, and moduli spaces, vol. 47 (AMS Colloquium Publications, Providence RI, 1999), 303.Google Scholar
19.Mann, E., Orbifold quantum cohomology of weighted projective spaces, J. Algebr. Geom. 17 (1) (2008), 137166.CrossRefGoogle Scholar
20.Marsh, R. and Rietsch, K., The B–model connection and mirror symmetry for Grassmannians, arXiv:1307.1085 [math.AG] (preprint 2013)Google Scholar
21.Parusinski, A., Topological triviality of μ-constant deformations of type f(x) + tg(x), Bull. London Math. Soc. 31 (6) (1999), 686692.CrossRefGoogle Scholar
22.Pech, C. and Rietsch, K., A comparison of Landau–Ginzburg models for odd dimensional Quadrics, arXiv:1306.4016 [math.AG] (preprint 2013)Google Scholar
23.Peters, C. and Steenbrink, J., Mixed hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics, vol. 52 (Springer-Verlag, Berlin, 2008).Google Scholar
24.Przyjalkowski, V., Weak Landau–Ginzburg models for smooth Fano threefolds, Izv. Ross. Akad. Nauk Ser. Mat. 77 (4) (2013), 135160 translation in Izv. Math. 77(4) (2013), 772794.Google Scholar
25.Rietsch, K., A mirror symmetric construction of qHT (G/P)(q), Adv. Math. 217 (6) (2008), 24012442.CrossRefGoogle Scholar
26.Sabbah, C., Isomonodromic deformations and Frobenius manifolds. An introduction, Translated from the 2002 French edition. Universitext, (Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2007), xiv+279Google Scholar
27.Sabbah, C., Hypergeometric period for a tame polynomial, C. R. Acad. Sci. Paris Sér. I Math. 328 (7) (1999), 603608.CrossRefGoogle Scholar
28.Saito, K., Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (3) (1983), 12311264.CrossRefGoogle Scholar
29.Saito, K. and Takahashi, A., From primitive forms to Frobenius manifolds, in From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78 (American Mathematical Society, Providence, RI, 2008), 3148.CrossRefGoogle Scholar
30.Smirnov, M., Gromov-Witten correspondences, derived categories, and Frobenius manifolds, PhD Thesis (University of Bonn, 2013).Google Scholar
31.Witten, E., Phases of N=2 theories in two dimensions Nucl. Phys. B 403 (1993), 159222.CrossRefGoogle Scholar