Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T13:11:21.580Z Has data issue: false hasContentIssue false

SOME NEW EXAMPLES OF SMASH-NILPOTENT ALGEBRAIC CYCLES

Published online by Cambridge University Press:  13 March 2017

ROBERT LATERVEER*
Affiliation:
Institut de Recherche Mathématique Avancée, CNRS – Université de Strasbourg, 7 Rue René Descartes, 67084 Strasbourg CEDEX, France e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Voevodsky has conjectured that numerical equivalence and smash-equivalence coincide for algebraic cycles on any smooth projective variety. Building on work of Vial and Kahn–Sebastian, we give some new examples of varieties where Voevodsky's conjecture is verified.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2017 

References

REFERENCES

1. André, Y., Motifs de dimension finie (d'après S.-I. Kimura, P. O'Sullivan, . . .), Séminaire Bourbaki 2003/2004, Astérisque 299 Exp. No. 929, viii, 115–145.Google Scholar
2. Beauville, A., Sur l'anneau de Chow d'une variété abélienne, Math. Ann. 273 (1986), 647651.CrossRefGoogle Scholar
3. Bloch, S., Some elementary theorems about algebraic cycles on abelian varieties, Invent. Math. 37 (1976), 215228.Google Scholar
4. Bloch, S., Lectures on algebraic cycles (Duke Univ. Press, Durham, 1980).Google Scholar
5. Bloch, S., Kas, A. and Lieberman, D., Zero cycles on surfaces with pg = 0, Comp. Math. 33 (2) (1976), 135145.Google Scholar
6. Bloch, S. and Ogus, A., Gersten's conjecture and the homology of schemes, Ann. Sci. Ecole Norm. Sup. 4 (1974), 181202.CrossRefGoogle Scholar
7. Bloch, S. and Srinivas, V., Remarks on correspondences and algebraic cycles, Am. J. Math. 105 (5) (1983), 12351253.Google Scholar
8. Bonfanti, M., On the cohomology of regular surfaces isogenous to a product of curves with χ( ${\mathcal O}$ S) = 2, arXiv:1512.03168v1.Google Scholar
9. Brion, M., Log homogeneous varieties, in Actas del XVI Coloquio Latinoamericano de Algebra, Revista Matemática Iberoamericana (Madrid, 2007).Google Scholar
10. de Cataldo, M. and Migliorini, L., The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra 251 (2) (2002), 824848.Google Scholar
11. Charles, F. and Markman, E., The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of K3 surfaces, Comp. Math. 149 (2013), 481494.Google Scholar
12. Cynk, S. and Hulek, K., Higher–dimensional modular Calabi–Yau manifolds, Canad. Math. Bull. 50 (4) (2007), 486503.CrossRefGoogle Scholar
13. Deligne, P., La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972), 206226.Google Scholar
14. Deninger, C. and Murre, J., Motivic decomposition of abelian schemes and the Fourier transform, J. Reine u. Angew. Math. 422 (1991), 201219.Google Scholar
15. Garbagnati, A. and Penegini, M., K3 surfaces with a non–symplectic automorphism and product–quotient surfaces with cyclic groups, Rev. Mat. Iberoam. 31 (4) (2015), 12771310.Google Scholar
16. Guletskiĭ, V. and Pedrini, C., The Chow motive of the Godeaux surface, in Algebraic geometry, a volume in memory of Paolo Francia (Beltrametti, M. C., Catanese, F., Ciliberto, C., Lanteri, A. and Pedrini, C. Editors) (Walter de Gruyter, Berlin, New York, 2002), 179196.Google Scholar
17. Ivorra, F., Finite dimensional motives and applications, following S.-I. Kimura, P. O'Sullivan and others, in Autour des motifs, Asian-French summer school on algebraic geometry and number theory, (Saito, T. et al., Editors) Volume III (Panoramas et synthèses, Société mathématique de France, 2011), 65100.Google Scholar
18. Iyer, J., Murre's conjectures and explicit Chow–Künneth projectors for varieties with a nef tangent bundle, Trans. Amer. Math. Soc. 361 (2008), 16671681.Google Scholar
19. Iyer, J., Absolute Chow–Künneth decomposition for rational homogeneous bundles and for log homogeneous varieties, Michigan Math. J. 60 (1) (2011), 7991.Google Scholar
20. Jannsen, U., Motivic sheaves and filtrations on Chow groups, in Motives (Jannsen, U. et al. Editors) Proceedings of Symposia in Pure Mathematics, vol. 55 (1994), Part 1, Amer. Math. Soc., 245302.Google Scholar
21. Jannsen, U., Equivalence relations on algebraic cycles, in The arithmetic and geometry of algebraic cycles (Gordon, B. et al. Editors) (Banff Conference, Kluwer, 1998), 225260.Google Scholar
22. Jannsen, U., On finite–dimensional motives and Murre's conjecture, in Algebraic cycles and motives (Nagel, J. and Peters, C. Editors) (Cambridge University Press, Cambridge, 2007), 112142.Google Scholar
23. Kahn, B. and Sebastian, R., Smash–nilpotent cycles on abelian 3–folds, Math. Res. Lett. 16 (2009), 10071010.Google Scholar
24. Kimura, S., Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), 173201.Google Scholar
25. Kimura, S., Surjectivity of the cycle map for Chow motives, in Motives and algebraic cycles (de Jeu, R. and Lewis, J. Editors) (Amer. Math. Soc., Providence, 2009), 157165.Google Scholar
26. Kimura, S. and Vistoli, A., Chow rings of infinite symmetric products, Duke Math. J. 85 (1996), 411430.CrossRefGoogle Scholar
27. Kleiman, S., Algebraic cycles and the Weil conjectures, in Dix exposés sur la cohomologie des schémas (North Holland Publishing, Amsterdam, 1968), 359386.Google Scholar
28. Kleiman, S., The standard conjectures, in Motives (Jannsen, U. et al. Editors) Proceedings of Symposia in Pure Mathematics, vol. 55 (1994), Part 1, Amer. Math. Soc., 320.Google Scholar
29. Laterveer, R., Some desultory remarks concerning algebraic cycles and Calabi–Yau threefolds, Rend. Circ. Mat. Palermo 65 (2) (2016), 333344.Google Scholar
30. Laterveer, R., A family of Calabi–Yau threefolds with finite–dimensional motive, submitted to Tokyo Math. J. Google Scholar
31. Murre, J., On a conjectural filtration on the Chow groups of an algebraic variety, parts I and II, Indag. Math. 4 (1993), 177201.Google Scholar
32. Murre, J., Nagel, J. and Peters, C., Lectures on the theory of pure motives, Amer. Math. Soc. University Lecture Series, vol. 61 (Amer. Math. Soc., Providence, 2013).CrossRefGoogle Scholar
33. Paranjape, K., Abelian varieties associated to certain K3 surfaces, Comp. Math. 68 (1988), 1122.Google Scholar
34. Pedrini, C., On the finite dimensionality of a K3 surface, Manuscr. Math. 138 (2012), 5972.Google Scholar
35. Pedrini, C. and Weibel, C., Some surfaces of general type for which Bloch's conjecture holds, in Recent Advances in Hodge Theory, Period Domains, Algebraic Cycles and Arithmetic (Kerr, M. and Pearlstein, G. Editors) (Cambridge University Press, Cambridge, 2016).Google Scholar
36. Samuel, P., Relations d'équivalence en géométrie algébrique, in Proc. Int. Congress Math. 1958 (Cambridge Univ. Press, New York, 1960), 470487.Google Scholar
37. Scholl, T., Classical motives, in Motives (Jannsen, U. et al. Editors), Proceedings of Symposia in Pure Mathematics, vol. 55 (1994), Part 1, Amer. Math. Soc., 163187.Google Scholar
38. Sebastian, R., Smash nilpotent cycles on varieties dominated by products of curves, Comp. Math. 149 (2013), 15111518.Google Scholar
39. Sebastian, R., Examples of smash nilpotent cycles on rationally connected varieties, J. Algebra 438 (2015), 119129.Google Scholar
40. Shioda, T., The Hodge conjecture for Fermat varieties, Math. Ann. 245 (1979), 175184.Google Scholar
41. Tankeev, S., On the standard conjecture of Lefschetz type for complex projective threefolds. II, Izv. Math. 75 (5) (2011), 10471062.CrossRefGoogle Scholar
42. Vial, C., Algebraic cycles and fibrations, Doc. Math. 18 (2013), 15211553.Google Scholar
43. Vial, C., Projectors on the intermediate algebraic Jacobians, New York J. Math. 19 (2013), 793822.Google Scholar
44. Vial, C., Remarks on motives of abelian type, to appear in Tohoku Math. J. Google Scholar
45. Vial, C., Niveau and coniveau filtrations on cohomology groups and Chow groups, Proc. LMS 106 (2) (2013), 410444.Google Scholar
46. Vial, C., Chow–Künneth decomposition for 3– and 4–folds fibred by varieties with trivial Chow group of zero–cycles, J. Alg. Geom. 24 (2015), 5180.Google Scholar
47. Voevodsky, V., A nilpotence theorem for cycles algebraically equivalent to zero, Internat. Math. Res. Not. 4 (1995), 187198.Google Scholar
48. Voisin, C., Remarks on zero–cycles of self–products of varieties, in Moduli of vector bundles, Proceedings of the Taniguchi Congress (Maruyama, M. Editor) (Marcel Dekker, New York, Basel Hong Kong, 1994), 265285.Google Scholar
49. Voisin, C., Bloch's conjecture for Catanese and Barlow surfaces, J. Differ. Geom. 97 (2014), 149175.Google Scholar
50. Voisin, C., Chow rings, decomposition of the diagonal, and the topology of families (Princeton University Press, Princeton and Oxford, 2014).Google Scholar
51. Voisin, C., The generalized Hodge and Bloch conjectures are equivalent for general complete intersections, II, J. Math. Sci. Univ. Tokyo 22 (2015), 491517.Google Scholar
52. Xu, Z., Algebraic cycles on a generalized Kummer variety, arXiv:1506.04297v1.Google Scholar