Published online by Cambridge University Press: 18 May 2009
In [3], a group G was said to be a CF-group if, for every subgroup H of G, H/CoreGH is finite. It was shown there that a locally finite CF-group G is abelian-by-finite and that there is a bound for the indices |H: CoreGH| as H runs through all subgroups of G. (Groups for which such a bound exists were referred to in [3] as BCF-groups.) The CF-property was further investigated in [10], one of the main results there being that nilpotent CF-groups are (again) abelian-by-finite and BCF. In the present paper, we shall discuss the CF-property in conjunction with some related properties, which are defined as follows.