Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T12:21:29.506Z Has data issue: false hasContentIssue false

Some characterizations of semiprime Goldie rings

Published online by Cambridge University Press:  18 May 2009

S. R. López-Permouth
Affiliation:
Ohio UniversityAthens Ohio 4570
S. Tariq Rizvi
Affiliation:
Ohio State UniversityLima Ohio 45804
M. F. Yousif
Affiliation:
Ohio State UniversityLima Ohio 45804
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The notation in this paper will be standard and it may be found in [3], for example. In particular, the notation A ⊂′ B stands for the statement “A is an essential submodule of B”. As is customary, we say that a ring R is a Goldie ring when R is both left and right Goldie. Similarly, a ring is noetherian if and only if it is both right and left noetherian, etc.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1993

References

REFERENCES

1.Al-Huzali, A. H., Jain, S. K. and López-Permouth, S. R., Rings whose cyclics have finite Goldie dimension, to appear in J. Algebra.Google Scholar
2.Al-Huzali, A. H., Jain, S. K. and López-Permouth, S. R., Weakly-injective rings and modules, Osaka J. Math. 29 (1992), 7587.Google Scholar
3.Anderson, F. W. and Fuller, K. R., Rings and categories of modules (Springer, 1974).CrossRefGoogle Scholar
4.Boyle, A. K., Hereditary Ql-rings, Trans. Amer. Math. Soc. 192 (1974), 115120.Google Scholar
5.Boyle, A. K., Injectives containing no proper quasi-injective submodules, Comm. Algebra 4 (1976), 775785.CrossRefGoogle Scholar
6.Boyle, A. K. and Goodearl, K. R., Rings over which certain modules are injective, Pacific J. Math. 58 (1975), 4353.CrossRefGoogle Scholar
7.Camillo, V. P., Modules whose quotients have finite Goldie dimension, Pacific J. Math. 69 (1977), 337338.CrossRefGoogle Scholar
8.Chatters, A. W. and Hajarnavis, C. R., Rings with chain conditions (Pitman, 1980).Google Scholar
9.Cozzens, J. and Faith, C., Simple Noetherian rings (Cambridge University Press, 1975).CrossRefGoogle Scholar
10.Faith, C., On hereditary rings and Boyle's conjecture, Arch. Math. (Basel) 27 (1976), 113119.CrossRefGoogle Scholar
11.Golan, J. S. and López-Permouth, S. R., Ql-filters and tight modules, Comm. Algebra 19 (1991), 22172229.CrossRefGoogle Scholar
12.Jain, S. K., López-Permouth, S. R. and Singh, S., On a class of Ql-rings, Glasgow Math. J. 34 (1992), 7581.CrossRefGoogle Scholar
13.Jategaonkar, A. V., Localization in Noetherian rings (Cambridge University Press, 1986).CrossRefGoogle Scholar
14.Kosler, K. A., On hereditary and Noetherian V-rings, Pacific J. Math. 103 (1982), 467473.CrossRefGoogle Scholar
15.Kurshan, R. P., Rings whose cyclic modules have finitely generated socle, J. Algebra 15 (1970), 376386.CrossRefGoogle Scholar
16.López-Permouth, S. R., Rings characterized by their weakly-injective modules, Glasgow Math J. 34 (1992), 349353.CrossRefGoogle Scholar
17.Page, S. S. and Yousif, M. F., Relative injectivity and chain conditions, Comm. Algebra 17 (1989), 899924.CrossRefGoogle Scholar
18.Schock, R. C., Dual generalizations of the Artinian and Noetherian conditions, Pacific J. Math. 54 (1974), 227235.CrossRefGoogle Scholar
19.Warfield, R. B., Decompositions of injective modules, Pacific J. Math. 31 (1969), 263276.CrossRefGoogle Scholar