No CrossRef data available.
Published online by Cambridge University Press: 11 May 2021
Let K be a field of arbitrary characteristic, $${\cal A}$$ be a commutative K-algebra which is a domain of essentially finite type (e.g., the algebra of functions on an irreducible affine algebraic variety), $${a_r}$$ be its Jacobian ideal, and $${\cal D}\left( {\cal A} \right)$$ be the algebra of differential operators on the algebra $${\cal A}$$ . The aim of the paper is to give a simplicity criterion for the algebra $${\cal D}\left( {\cal A} \right)$$ : the algebra $${\cal D}\left( {\cal A} \right)$$ is simple iff $${\cal D}\left( {\cal A} \right)a_r^i{\cal D}\left( {\cal A} \right) = {\cal D}\left( {\cal A} \right)$$ for all i ≥ 1 provided the field K is a perfect field. Furthermore, a simplicity criterion is given for the algebra $${\cal D}\left( R \right)$$ of differential operators on an arbitrary commutative algebra R over an arbitrary field. This gives an answer to an old question to find a simplicity criterion for algebras of differential operators.