Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T18:26:27.521Z Has data issue: false hasContentIssue false

Semigroup identities on units of integral group rings

Published online by Cambridge University Press:  18 May 2009

Michael A. Dokuchaev
Affiliation:
Instituto de Matemática e Estatistica, Universidade de Sāo Paulo, CP 66281-AG Cid. de Sāo Paulo, CEP 05389-970 Sāo Paulo-Brazil, [email protected], [email protected]
Jairo Z. Gonçalves
Affiliation:
Instituto de Matemática e Estatistica, Universidade de Sāo Paulo, CP 66281-AG Cid. de Sāo Paulo, CEP 05389-970 Sāo Paulo-Brazil, [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let U(RG) be the group of units of a group ring RG over a commutative ring R with 1. We say that a group is an SIT-group if it is an extension of a group which satisfies a semigroup identity by a torsion group. It is a consequence of the main result that if G is torsion and R = Z, then U(RG) is an SIT-group if and only if G is either abelian or a Hamiltonian 2-group. If R is a local ring of characteristic 0 only the first alternative can occur.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1997

References

REFERENCES

1.Bovdi, A. A., The multiplicative group of an integral group ring (Russian) (Uzhgorod, 1987).Google Scholar
2.Gonçalves, J. Z., Integral group rings whose group of units is solvable: an elementary proof, Bol. Soc. Brasil. Mat. 16, 2 (1985), 19.CrossRefGoogle Scholar
3.Gongalves, J. Z. and Mandel, A., Semigroup identities on units of group algebras, Archiv. Mater. (Basel) 57 (1991), 539545.CrossRefGoogle Scholar
4.Hartley, B. and Pickel, P. F., Free subgroups in the unit groups of integral group rings, Canad. J. Math. 32 (1980), 13421352.CrossRefGoogle Scholar
5.Huppert, B. and Blackburn, N., Finite groups II (Springer-Verlag, Berlin-Heidelberg, 1982).Google Scholar
6.Karpilovsky, G., Unit groups of classical rings (Oxford University Press, 1988).Google Scholar
7.Passman, D. S., The algebraic structure of group rings (Wiley-Interscience, New York, 1977).Google Scholar
8.Rosenblatt, J. M., Invariant measures and growth conditions. Trans. A.M.S. 193 (1974), 3352.CrossRefGoogle Scholar
9.Sehgal, S. K., Topics in group rings (Marcel Dekker, New York, 1978).Google Scholar
10.Sehgal, S. K., Units in integral group rings (Wiley, New York, 1993).Google Scholar
11.Tits, J., Free subgroups in linear groups, J. Algebra 20 (1972), 250270.CrossRefGoogle Scholar