No CrossRef data available.
Published online by Cambridge University Press: 25 February 2013
The notion of ring endomorphisms having large images is introduced. Among others, injectivity and surjectivity of such endomorphisms are studied. It is proved, in particular, that an endomorphism σ of a prime one-sided noetherian ring R is injective whenever the image σ(R) contains an essential left ideal L of R. If, in addition, σ(L)=L, then σ is an automorphism of R. Examples showing that the assumptions imposed on R cannot be weakened to R being a prime left Goldie ring are provided. Two open questions are formulated.