Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T17:42:37.418Z Has data issue: false hasContentIssue false

ON THE NUMBER OF RATIONAL POINTS ON PRYM VARIETIES OVER FINITE FIELDS

Published online by Cambridge University Press:  21 July 2015

YVES AUBRY
Affiliation:
Institut de Mathématiques de Toulon, Université de Toulon, 83 957 La Garde, France and Institut de Mathématiques de Marseille, Aix-Marseille Université, 13 288 Marseille, France e-mail: [email protected]
SAFIA HALOUI
Affiliation:
Department of Mathematics, Technical University of Denmark, Lyngby, Denmark e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give upper and lower bounds for the number of rational points on Prym varieties over finite fields. Moreover, we determine the exact maximum and minimum number of rational points on Prym varieties of dimension 2.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2015 

References

REFERENCES

1.Aubry, Y., Haloui, S. and Lachaud, G., Sur le nombre de points rationnels des variétés abéliennes et des Jacobiennes sur les corps finis, C. R. Acad. Sci. Paris, Ser. I 350 (2012), 907910.CrossRefGoogle Scholar
2.Aubry, Y., Haloui, S. and Lachaud, G., On the number of points on abelian and Jacobian varieties over finite fields, Acta Arithmetica 160 (3) (2013), 201241.CrossRefGoogle Scholar
3.Beauville, A., Prym varieties: A survey, in Proc. Symposia in Pure Math., 49 (1989).CrossRefGoogle Scholar
4.Bruin, N., The arithmetic of Prym varieties in genus 3, Compos. Math. 144 (2008), 317338.CrossRefGoogle Scholar
5.Deuring, M., Die typen der multiplikatorenringe elliptischer funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197272.CrossRefGoogle Scholar
6.Ihara, Y., Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (3) (1981), 721724.Google Scholar
7.Mumford, D., Prym varieties I, in Contributions to Analysis (Academic Press, 1974), 325350.CrossRefGoogle Scholar
8.Perret, M., Number of points of Prym varieties over finite fields, Glasgow Math. J. 48 (2006), 275280.CrossRefGoogle Scholar
9.Rück, H. G., A note on elliptic curves over finite fields, Math. Comp. 49 (1987), 301304.CrossRefGoogle Scholar
10.Rück, H. G., Abelian surfaces and Jacobian varieties over finite fields, Compositio Math. 76 (1990), 351366.Google Scholar
11.Serre, J.-P., Rational points on curves over finite fields, Lectures at Harvard University, Notes by F. Gouvea, 1985.Google Scholar
12.Smyth, C.. Totally positive algebraic integers of small trace. Ann. Inst. Fourier, 34 (3) (1984), 128.CrossRefGoogle Scholar
13.Waterhouse, W. C., Abelian varieties over finite fields, Ann. Sc. E.N.S. 2 (4) (1969), 521560.Google Scholar