Published online by Cambridge University Press: 07 February 2017
We study the homological algebra of bimodules over involutive associative algebras. We show that Braun's definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the ℤ/2-invariants intersected with the centre. We then introduce the corresponding involutive Hochschild homology theory and describe it as the derived functor of the pushout of ℤ/2-coinvariants and abelianization.