Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T02:00:38.179Z Has data issue: false hasContentIssue false

On the geometry of the unit spheres of the Lorentz spaces Lw,1

Published online by Cambridge University Press:  18 May 2009

N. L. Carothers
Affiliation:
Bowling Green State University, Bowling Green, Ohio 43403, U.S.A.
S. J. Dilworth
Affiliation:
University of South Carolina, Columbia, South Carolina 29208, U.S.A.
D. A. Trautman
Affiliation:
The Citadel, Charleston, South Carolina 29409, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We identify the extreme points of the unit sphere of the Lorentz space Lw,1 This yields a characterization of the surjective isometries of Lw,1(0,1). Our main result is that every element in the unit sphere of Lw,1 is the barycenter of a unique Borel probability measure supported on the extreme points of the unit sphere of Lw,1.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1992

References

REFERENCES

1.Bennett, C. and Sharpley, R. C., Interpolation of Operators (Academic Press, 1988).Google Scholar
2.Carothers, N. L. and Turett, B., Isometries on L p,1, Trans. Amer. Math. Soc. 297 (1986), 95103.Google Scholar
3.Davis, W. J., Positive bases in Banach spaces, Rev. Roumaine Math. Pures Appl. 16 (1971), 487492.Google Scholar
4.Hewitt, E. and Stromberg, K., Real and Abstract Analysis. (Springer-Verlag, 1975).Google Scholar
5.Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces II: Function Spaces, Ergebnisse Math. 2. Folge 97 (Springer-Verlag, 1979).CrossRefGoogle Scholar
6.Royden, H. L., Real Analysis, 3rd. Ed. (Macmillan, 1988).Google Scholar