Published online by Cambridge University Press: 18 May 2009
In this paper all sets considered are assumed to be compact subsets of Euclidean Space En. A number of results concerning the total edge-lengths of polyhedra have been given by various authors, many of which are mentioned in references in [1]. In [1], it was conjectured that all polytopes inscribed in the unit sphere and containing its centre have total edge-length greater than 2n. This was proved true for simplicial polytopes and shown to be best possible in the sense that there exist simplices with the stated property and with total edge-length arbitrarily close to 2n. In this paper we shall show that the bound is not always best possible if the magnitudes of the faces of such polytopes are restricted and we shall also give some related results on surface areas. This work was carried out while the author was a research student at Royal Holloway College, London and is a revised version of part of the author's thesis approved for the Ph.D. degree.