Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T21:40:24.579Z Has data issue: false hasContentIssue false

on l-adic representations attached to modular forms II

Published online by Cambridge University Press:  18 May 2009

Kenneth A. Ribet
Affiliation:
Department of Mathematics, University of California, Berkeley California 94720, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose that is a newform of weight k on Г1(N). Thus f is in particular a cusp form on Г1(N), satisfying

for all n≥1. Associated with f is a Dirichlet character

such that

for all, .

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1985

References

REFERENCES

1.Carayol, H., Sur la mauvaise réduction des courbes de Shimura, C.R. Acad. Sci. Paris Sér. I Math. 296 (1983), 557560.Google Scholar
2.Carayol, H., Sur les représentations l-adiques attachées aux formes modulaires de Hilbert, C.R. Acad. Sci. Paris Ser. I. Math. 296 (1983), 629632.Google Scholar
3.Deligne, P., Formes modulaires et représentations l-adiques, Lecture Notes in Math. 179 (1971), 139172.CrossRefGoogle Scholar
4.Deligne, P., Letter to I. Piatetski-Shapiro (1973).Google Scholar
5.Deligne, P., Formes modulaires et représentations de GL(2), Lecture Notes in Math. 349 (1973), 55105.CrossRefGoogle Scholar
6.Deligne, P., Les constantes des équations fonctionnelles des fonctions L, Lecture Notes in Math. 349 (1973), 501597.CrossRefGoogle Scholar
7.Deligne, P. and Serre, J-P., Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507530.CrossRefGoogle Scholar
8.Gorenstein, D., Finite Groups (Harper and Row, 1968).Google Scholar
9.Kutzko, P., The Langlands conjecture for GL2 of a local field, Ann. of Math. (2) 112 (1980), 381412.CrossRefGoogle Scholar
10.Langlands, R. P., Modular forms and l-adic representations, Lecture Notes in Math. 349 (1973), 361500.CrossRefGoogle Scholar
11.Momose, F., On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo Sect IA Math., to appear.Google Scholar
12.Ribet, K., On l-adic representations attached to modular forms, Invent. Math. 28 (1975), 245275.CrossRefGoogle Scholar
13.Ribet, K., Galois representations attached to eigenforms with nebentypus, Lecture Notes in Math. 601 (1977), 1752.Google Scholar
14.Rogawski, J-P. and Tunnell, J., On Artin L-functions associated to Hilbert modular forms of weight one, Invent. Math. 74 (1983), 142.CrossRefGoogle Scholar
15.Serre, J-P., Congruences et formes modulaires (d'apres H. P. F. Swinnerton-Dyer), Lectures Notes in Math. 317 (1973), 319338.CrossRefGoogle Scholar
16.Serre, J-P., Proprietés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259331.CrossRefGoogle Scholar
17.Serre, J-P., Letter to J-M. Fountaine (27 05, 1979).Google Scholar
18.Swinnerton-Dyer, H. P. F., On l-adic representations and congruences for coefficients of modular forms, Lecture Notes in Math. 350 (1973), 155.CrossRefGoogle Scholar
19.Tate, J., Number theoretic background, Automorphic forms, representations and L-functions, Proc. Symp. Pure Math. 33 Part 2 (American Mathematical Society, 1979), 326.CrossRefGoogle Scholar