Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T01:35:26.289Z Has data issue: false hasContentIssue false

ON FREE SPECTRA OF LOCALLY TESTABLE SEMIGROUP VARIETIES

Published online by Cambridge University Press:  10 March 2011

IGOR DOLINKA*
Affiliation:
Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For each k ≥ 2, we determine the asymptotic behaviour of the sequence of cardinalities of finitely generated free objects in , the variety consisting of all k-testable semigroups.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2011

References

REFERENCES

1.Bang-Jensen, J. and Gutin, G. Z., Digraphs: Theory, algorithms and applications, 2nd edn. (Springer-Verlag, New York, 2010).Google Scholar
2.Berman, J., Free spectra gaps and tame congruence types, Int. J. Algebra Comput. 5 (1995), 651672.Google Scholar
3.Brzozowski, J. A. and Simon, I., Characterizations of locally testable events, Discrete Math. 4 (1973), 243271.CrossRefGoogle Scholar
4.Burris, S. and Sankappanavar, H. P., A course in universal algebra (Springer-Verlag, New York, 1981).CrossRefGoogle Scholar
5.Crvenković, S., Dolinka, I. and Ruškuc, N., Finite semigroups with few term operations, J. Pure Appl. Algebra 157 (2001), 205214.CrossRefGoogle Scholar
6.Crvenković, S., Dolinka, I. and Ruškuc, N., The Berman conjecture is true for finite surjective semigroups and their inflations, Semigroup Forum 62 (2001), 103114.Google Scholar
7.de Bruijn, N. G., A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49 (1946), 758764.Google Scholar
8.Delorme, C. and Tillich, J.-P., The spectrum of de Bruijn and Kautz graphs, Eur. J. Comb. 19 (1998), 307319.CrossRefGoogle Scholar
9.Good, I. J., Normal recurring decimals, J. Lond. Math. Soc. 21 (1946), 167169.CrossRefGoogle Scholar
10.Hermiller, S., Holt, D. F. and Rees, S., Groups whose geodesics are locally testable, Int. J. Algebra Comput. 18 (2008), 911923.CrossRefGoogle Scholar
11.Higman, G., The orders of relatively free groups, in Proceedings of International Conference on the Theory of Groups, Canberra, 1965 (Gordon & Breach, New York, 1967), 153165.Google Scholar
12.Hobby, D. and McKenzie, R., The structure of finite algebras, Contemporary Mathematics, vol. 76 (American Mathematical Society, Providence, RI, 1988).CrossRefGoogle Scholar
13.Kátai-Urbán, K. and Szabó, Cs., On the free spectrum of the variety generated by the combinatorial completely 0-simple semigroups, Glasgow Math. J. 49 (2007), 9398.Google Scholar
14.Kim, S. and McNaughton, R., Computing the order of a locally testable automaton, SIAM J. Comput. 23 (1994), 11931215.CrossRefGoogle Scholar
15.Lee, E. W. H. and Volkov, M. V., On the structure of the lattice of combinatorial Rees-Sushkevich varieties, in Semigroups and formal languages, Lisbon, 2005 (André, J. M. et al. , Editors) (World Scientific, Hackensack, NJ, 2007), 164187.Google Scholar
16.McAlister, D. B. and Soares, F., One-dimensional tiling semigroups and factorial languages, Comm. Algebra 37 (2009), 276295.Google Scholar
17.McNaughton, R. and Papert, S., Counter-free automata (M.I.T. Press, Cambridge, MA, 1971).Google Scholar
18.Neumann, P. M., Some indecomposable varieties of groups, Q. J. Math. (Oxford) 14 (2) (1963), 4650.Google Scholar
19.Pin, J.-E., Finite semigroups and recognizable languages: An introduction, in Semigroups, formal languages and groups (Fountain, J., Editor) (NATO Advanced Study Institute & Kluwer, Dordrecht, 1995), 132.Google Scholar
20.Trahtman, A. N., The varieties of n-testable semigroups, Semigroup Forum 27 (1983), 309317.Google Scholar
21.Trahtman, A. N., Identities of a five-element 0-simple semigroup, Semigroup Forum 48 (1994), 385387.CrossRefGoogle Scholar
22.Trahtman, A. N., Identities of locally testable semigroups, Comm. Algebra 27 (1999), 54055412.CrossRefGoogle Scholar