Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T22:32:03.499Z Has data issue: false hasContentIssue false

ON DIFFERENCES BETWEEN THE BORDER RANK AND THE SMOOTHABLE RANK OF A POLYNOMIAL

Published online by Cambridge University Press:  17 December 2014

WERONIKA BUCZYŃSKA
Affiliation:
Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland e-mails: [email protected]; [email protected]
JAROSŁAW BUCZYŃSKI
Affiliation:
Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland e-mails: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider higher secant varieties to Veronese varieties. Most points on the rth secant variety are represented by a finite scheme of length r contained in the Veronese variety – in fact, for a general point, the scheme is just a union of r distinct points. A modern way to phrase it is: the smoothable rank is equal to the border rank for most polynomials. This property is very useful for studying secant varieties, especially, whenever the smoothable rank is equal to the border rank for all points of the secant variety in question. In this note, we investigate those special points for which the smoothable rank is not equal to the border rank. In particular, we show an explicit example of a cubic in five variables with border rank 5 and smoothable rank 6. We also prove that all cubics in at most four variables have the smoothable rank equal to the border rank.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2014 

References

REFERENCES

1.Buczyńska, W. and Buczyński, J., Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes J. Algebr. Geom. 23 (2014), 6390.Google Scholar
2.Buczyńska, W., Buczyński, J., Kleppe, J. and Teitler, Z., Apolarity and direct sum decomposability of polynomials, arXiv:1307.3314, 2013.Google Scholar
3.Bernardi, A., Brachat, J. and Mourrain, B., A comparison of different notions of ranks of symmetric tensors, Linear Algebra Appl. 460 (2014), 205230. http://www.sciencedirect.com/science/article/pii/S002437951400487X.Google Scholar
4.Bernardi, A., Gimigliano, A. and Idà, M., Computing symmetric rank for symmetric tensors, J. Symb. Comput. 46 (1) (2011), 3453.CrossRefGoogle Scholar
5.Buczyński, J., Ginensky, A. and Landsberg, J. M., Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, J. London Math. Soc. (2) 88 (1) (2013), 124.Google Scholar
6.Buczyński, J. and Landsberg, J. M., On the third secant variety, J. Algebr. Comb. 40 (2) (2014), 475502. http://link.springer.com/article/10.1007/s10801-013-0495-0.CrossRefGoogle Scholar
7.Buczyński, J. and Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, Linear Algebra Appl. 438 (2) (2013), 668689.Google Scholar
8.Brambilla, M. C. and Ottaviani, G., On the Alexander-Hirschowitz theorem, J. Pure Appl. Algebra 212 (5) (2008), 12291251.Google Scholar
9.Bernardi, A. and Ranestad, K., On the cactus rank of cubics forms J. Symb. Comput. 50 (2013), 291297.Google Scholar
10.Carlini, E., Catalisano, M. V. and Geramita, A. V., The solution to the Waring problem for monomials and the sum of coprime monomials, J. Algebra 370 (2012), 514.Google Scholar
11.Casnati, G. and Notari, R., On the Gorenstein locus of some punctual Hilbert schemes, J. Pure Appl. Algebra 213 (11) (2009), 20552074.Google Scholar
12.Casnati, G. and Notari, R., On the irreducibility and the singularities of the Gorenstein locus of the punctual Hilbert scheme of degree 10, J. Pure Appl. Algebra 215 (6) (2011), 12431254.CrossRefGoogle Scholar
13.Eisenbud, D., Commutative algebra, Graduate Texts in Mathematics, vol. 150 (Springer-Verlag, New York, 1995). With a view toward algebraic geometry.Google Scholar
14.Gotzmann, G., Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z. 158 (1) (1978), 6170.CrossRefGoogle Scholar
15.Green, M. L., Generic initial ideals, in Six lectures on commutative algebra, Progress in Mathematics, vol. 166 (Birkhäuser Verlag, Basel, 1998), 119186.CrossRefGoogle Scholar
16.Iarrobino, A. and Kanev, V., Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721 (Springer-Verlag, Berlin, 1999). Appendix C by Iarrobino and Steven L. Kleiman.CrossRefGoogle Scholar
17.Landsberg, J. M., The border rank of the multiplication of 2×2 matrices is seven, J. Am. Math. Soc. 19 (2) (2006), 447459.Google Scholar
18.Landsberg, J. M. and Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (3) (2010), 339366.Google Scholar
19.Ranestad, K. and Schreyer, F.-O., On the rank of a symmetric form, J. Algebra 346 (2011), 340342.CrossRefGoogle Scholar
20.Stanley, R. P., Hilbert functions of graded algebras, Adv. Math. 28 (1) (1978), 5783.CrossRefGoogle Scholar
21.Teitler, Z., Maximum waring ranks of monomials, arXiv: 1309.7834, 2013.Google Scholar