Published online by Cambridge University Press: 18 May 2009
Let Q be a complete local ring which has the same characteristic as its residue field P, and, for the present, let us denote by A the image of a subset A of Q under the natural homomorphism of Q onto P. Then a subfield F of Q is called a coefficient field if = P. It has been shown in [2] and in [3] that a complete equicharacteristic local ring, such as the above, always possesses at least one coefficient field; this is the embedding theorem for the equicharacteristic case.