Published online by Cambridge University Press: 20 March 2017
Milnor proved that the moduli space Md of rational maps of degree d ≥ 2 has a complex orbifold structure of dimension 2(d − 1). Let us denote by ${\mathcal S}$d the singular locus of Md and by ${\mathcal B}$d the branch locus, that is, the equivalence classes of rational maps with non-trivial holomorphic automorphisms. Milnor observed that we may identify M2 with ℂ2 and, within that identification, that ${\mathcal B}$2 is a cubic curve; so ${\mathcal B}$2 is connected and ${\mathcal S}$2 = ∅. If d ≥ 3, then it is well known that ${\mathcal S}$d = ${\mathcal B}$d. In this paper, we use simple arguments to prove the connectivity of ${\mathcal S}$d.