Published online by Cambridge University Press: 18 May 2009
In their paper [1], Campbell and Jamison attempted to give necessary and sufficient conditions for a weighted composition operator on an L2 space to be normal, and to be quasinormal. Those conditions, specifically Theorems I and II of that paper, are not valid (see [2] for precise comments on the other results in that paper). In this paper we present a counterexample to those theorems and state and prove characterizations of quasinormality (Theorem 1 below) and normality (Theorem 2 and Corollary 3 below). We also discuss additional examples and information concerning normal weighted composition operators which contribute to the further understanding of this class.