Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T08:16:28.439Z Has data issue: false hasContentIssue false

Matrices Associated with Fractional Hankel and Fourier Transformations

Published online by Cambridge University Press:  18 May 2009

A. P. Guinand
Affiliation:
University of New England, Armidale, N.S.W., Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several writers (4), (6), (7), (9) have used orthogonal expansions in discussing properties of Fourier transformations, and Kober (3) has used such expansions to derive fractional Fourier and Hankel transformations. In 1950 Barrucand (1) noted a reciprocity holding between the coefficients in the expansions in Laguerre polynomials of pairs of functions which are transforms with respect to the kernel J0(2x½).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1956

References

REFERENCES

(1)Barrucand, P., Sur les suites réciproques, Comptes Rendus, 230 (1950), 1727–8.Google Scholar
(2)Cooke, R. G., Infinite matrices and sequence spaces (London, 1950), 20.Google Scholar
(3)Kober, H., Wurzeln avis der Hankel-, Fourier-, und aus anderen stetigen Transformationen, Quart. J. Math. (Oxford), (1) 10 (1939), 4559.CrossRefGoogle Scholar
(4)Plancherel, M., Contribution à l'étude de la représentation d'une fonction arbitraire par des intégrales définies, Rend, di Palermo, 30 (1910), 289335.CrossRefGoogle Scholar
(5)Szegö, G., Orthogonal polynomials, American. Math. Soc. Colloquium Publications, Vol. XXIII (1939).Google Scholar
(6)Titchmarsh, E. C., Hankel transforms, Proc. Cambridge Phil. Soc., 21 (1923), 463–73.Google Scholar
(7)Titchmarsh, E. C., Introduction to the theory of Fourier integrals (2nd edition, Oxford, 1948), 7683.Google Scholar
(8)Watson, G. N., A treatise on the theory of Bessel functions (2nd edition, Cambridge, 1941), 394 (4).Google Scholar
(9)Wiener, N., The Fourier integral (Cambridge, 1922), Chapter I.Google Scholar