Published online by Cambridge University Press: 03 July 2019
In this article, we study localizations of hearts of cotorsion pairs ($\mathcal{U}, \mathcal{V}$) where $\mathcal{U}$ is rigid on an extriangulated category $\mathcal{B}$ . The hearts of such cotorsion pairs are equivalent to the functor categories over the stable category of $\mathcal{U}$ ( $\bmod \underline{\mathcal{U}}$ ). Inspired by Marsh and Palu (Nagoya Math. J.225(2017), 64–99), we consider the mutation (in the sense of Iyama and Yoshino, Invent. Math.172(1) (2008), 117–168) of $\mathcal{U}$ that induces a cotorsion pair ( $\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$ ). Generally speaking, the hearts of ( $\mathcal{U}, \mathcal{V}$ ) and ( $\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$ ) are not equivalent to each other, but we will give a generalized pseudo-Morita equivalence between certain localizations of their hearts.