Published online by Cambridge University Press: 27 July 2005
Let $p$ be a prime number, $\Q_p$ the field of $p$-adic numbers, $K$ a finite field extension of $\Q_p$, $\skew4\bar K$ a fixed algebraic closure of $K$, and $\C_p$ the completion of $\skew4\bar K$ with respect to the $p$-adic valuation. We discuss some properties of Lipschitzian elements, which are elements $T$ of $\C_p$ defined by a certain metric condition that allows one to integrate Lipschitzian functions along the Galois orbit of $T$ over $K$ with respect to the Haar distribution.