Published online by Cambridge University Press: 13 August 2020
We consider frieze sequences corresponding to sequences of cluster mutations for affine D- and E-type quivers. We show that the cluster variables satisfy linear recurrences with periodic coefficients, which imply the constant coefficient relations found by Keller and Scherotzke. Viewing the frieze sequence as a discrete dynamical system, we reduce it to a symplectic map on a lower dimensional space and prove Liouville integrability of the latter.